Michael C. Chao
Brigham and Women's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael C. Chao.
Nature Biotechnology | 2012
Gang Fang; Diana Munera; David I. Friedman; Anjali Mandlik; Michael C. Chao; Onureena Banerjee; Zhixing Feng; Bojan Losic; Milind Mahajan; Omar J. Jabado; Gintaras Deikus; Tyson A. Clark; Khai Luong; Iain A. Murray; Brigid M. Davis; Andrew Chess; Richard J. Roberts; Jonas Korlach; Steve Turner; Vipin Kumar; Matthew K. Waldor; Eric E. Schadt
Single-molecule real-time (SMRT) DNA sequencing allows the systematic detection of chemical modifications such as methylation but has not previously been applied on a genome-wide scale. We used this approach to detect 49,311 putative 6-methyladenine (m6A) residues and 1,407 putative 5-methylcytosine (m5C) residues in the genome of a pathogenic Escherichia coli strain. We obtained strand-specific information for methylation sites and a quantitative assessment of the frequency of methylation at each modified position. We deduced the sequence motifs recognized by the methyltransferase enzymes present in this strain without prior knowledge of their specificity. Furthermore, we found that deletion of a phage-encoded methyltransferase-endonuclease (restriction-modification; RM) system induced global transcriptional changes and led to gene amplification, suggesting that the role of RM systems extends beyond protecting host genomes from foreign DNA.
Annual Review of Microbiology | 2010
Michael C. Chao; Eric J. Rubin
Mycobacterium tuberculosis, which causes tuberculosis, remains a major human public health threat. This is largely due to a sizeable reservoir of latently infected individuals, who may relapse into active disease decades after first acquiring the infection. Furthermore, patients have a very slow response to treatment of active disease. Latency and antibiotic tolerance are commonly taken as a proxy for dormancy, a stable nonreplicative state. However, latency is a clinical term that is solely defined by a lack of disease indicators. The actual state of the bacterium in human latency is not well understood. Here we evaluate the results of several in vitro models of dormancy and consider the applicability of various animal models for studying aspects of human latency and resistance to killing by antibiotics. Furthermore, we propose a model for the initiation of dormancy and resuscitation during infection.
Molecular Microbiology | 2007
Erik C. Hett; Michael C. Chao; Adrie J. C. Steyn; Sarah M. Fortune; Lynn L. Deng; Eric J. Rubin
Many cases of active tuberculosis are thought to result from the reactivation of dormant Mycobacterium tuberculosis from a prior infection, yet remarkably little is known about the mechanism by which these non‐sporulating bacteria reactivate. A family of extracellular bacterial proteins, known as resuscitation‐promoting factors (Rpfs), has previously been shown to stimulate growth of dormant mycobacteria. While Rpf proteins are clearly peptidoglycan glycosidases, the mechanism and role of Rpf in mediating reactivation remains unclear. Here we use a yeast two‐hybrid screen to identify potential binding partners of RpfB and report the interaction between RpfB and a putative mycobacterial endopeptidase, which we named Rpf‐interacting protein A (RipA). This interaction was confirmed by in vitro and in vivo co‐precipitation assays. The interacting domains map to the C‐termini of both proteins, near predicted enzymatic domains. We show that RipA is a secreted, cell‐associated protein, found in the same cellular compartment as RpfB. Both RipA and RpfB localize to the septa of actively growing bacteria by fluorescence microscopy. Finally, we demonstrate that RipA is capable of digesting cell wall material and is indeed a peptidoglycan hydrolase. The interaction between these two peptidoglycan hydrolases at the septum suggests a role for the complex in cell division, possibly during reactivation.
Nucleic Acids Research | 2013
Michael C. Chao; Justin R. Pritchard; Yanjia J. Zhang; Eric J. Rubin; Jonathan Livny; Brigid M. Davis; Matthew K. Waldor
The coupling of high-density transposon mutagenesis to high-throughput DNA sequencing (transposon-insertion sequencing) enables simultaneous and genome-wide assessment of the contributions of individual loci to bacterial growth and survival. We have refined analysis of transposon-insertion sequencing data by normalizing for the effect of DNA replication on sequencing output and using a hidden Markov model (HMM)-based filter to exploit heretofore unappreciated information inherent in all transposon-insertion sequencing data sets. The HMM can smooth variations in read abundance and thereby reduce the effects of read noise, as well as permit fine scale mapping that is independent of genomic annotation and enable classification of loci into several functional categories (e.g. essential, domain essential or ‘sick’). We generated a high-resolution map of genomic loci (encompassing both intra- and intergenic sequences) that are required or beneficial for in vitro growth of the cholera pathogen, Vibrio cholerae. This work uncovered new metabolic and physiologic requirements for V. cholerae survival, and by combining transposon-insertion sequencing and transcriptomic data sets, we also identified several novel noncoding RNA species that contribute to V. cholerae growth. Our findings suggest that HMM-based approaches will enhance extraction of biological meaning from transposon-insertion sequencing genomic data.
Current Opinion in Microbiology | 2013
Brigid M. Davis; Michael C. Chao; Matthew K. Waldor
DNA modifications, such as methylation guide numerous critical biological processes, yet epigenetic information has not routinely been collected as part of DNA sequence analyses. Recently, the development of single molecule real time (SMRT) DNA sequencing has enabled detection of modified nucleotides (e.g. 6mA, 4mC, 5mC) in parallel with acquisition of primary sequence data, based on analysis of the kinetics of DNA synthesis reactions. In bacteria, genome-wide mapping of methylated and unmethylated loci is now feasible. This technological advance sets the stage for comprehensive, mechanistic assessment of the effects of bacterial DNA methyltransferases (MTases)-which are ubiquitous, extremely diverse, and largely uncharacterized-on gene expression, chromosome structure, chromosome replication, and other fundamental biological processes. SMRT sequencing also enables detection of damaged DNA and has the potential to uncover novel DNA modifications.
PLOS Genetics | 2014
Justin R. Pritchard; Michael C. Chao; Sören Abel; Brigid M. Davis; Catherine Baranowski; Yanjia J. Zhang; Eric J. Rubin; Matthew K. Waldor
Transposon-insertion sequencing (TIS) is a powerful approach for deciphering genetic requirements for bacterial growth in different conditions, as it enables simultaneous genome-wide analysis of the fitness of thousands of mutants. However, current methods for comparative analysis of TIS data do not adjust for stochastic experimental variation between datasets and are limited to interrogation of annotated genomic elements. Here, we present ARTIST, an accessible TIS analysis pipeline for identifying essential regions that are required for growth under optimal conditions as well as conditionally essential loci that participate in survival only under specific conditions. ARTIST uses simulation-based normalization to model and compensate for experimental noise, and thereby enhances the statistical power in conditional TIS analyses. ARTIST also employs a novel adaptation of the hidden Markov model to generate statistically robust, high-resolution, annotation-independent maps of fitness-linked loci across the entire genome. Using ARTIST, we sensitively and comprehensively define Mycobacterium tuberculosis and Vibrio cholerae loci required for host infection while limiting inclusion of false positive loci. ARTIST is applicable to a broad range of organisms and will facilitate TIS-based dissection of pathways required for microbial growth and survival under a multitude of conditions.
Nature Reviews Microbiology | 2016
Michael C. Chao; Sören Abel; Brigid M. Davis; Matthew K. Waldor
Transposon insertion sequencing (TIS) is a powerful approach that can be extensively applied to the genome-wide definition of loci that are required for bacterial growth under diverse conditions. However, experimental design choices and stochastic biological processes can heavily influence the results of TIS experiments and affect downstream statistical analysis. In this Opinion article, we discuss TIS experimental parameters and how these factors relate to the benefits and limitations of the various statistical frameworks that can be applied to the computational analysis of TIS data.
PLOS Pathogens | 2015
Karen J. Kieser; Cara C. Boutte; Jemila C. Kester; Christina E. Baer; Amy K. Barczak; Xavier Meniche; Michael C. Chao; E. Hesper Rego; Christopher M. Sassetti; Sarah M. Fortune; Eric J. Rubin
Cell growth and division are required for the progression of bacterial infections. Most rod-shaped bacteria grow by inserting new cell wall along their mid-section. However, mycobacteria, including the human pathogen Mycobacterium tuberculosis, produce new cell wall material at their poles. How mycobacteria control this different mode of growth is incompletely understood. Here we find that PonA1, a penicillin binding protein (PBP) capable of transglycosylation and transpeptidation of cell wall peptidoglycan (PG), is a major governor of polar growth in mycobacteria. PonA1 is required for growth of Mycobacterium smegmatis and is critical for M. tuberculosis during infection. In both cases, PonA1’s catalytic activities are both required for normal cell length, though loss of transglycosylase activity has a more pronounced effect than transpeptidation. Mutations that alter the amount or the activity of PonA1 result in abnormal formation of cell poles and changes in cell length. Moreover, altered PonA1 activity results in dramatic differences in antibiotic susceptibility, suggesting that a balance between the two enzymatic activities of PonA1 is critical for survival. We also find that phosphorylation of a cytoplasmic region of PonA1 is required for normal activity. Mutations in a critical phosphorylated residue affect transglycosylase activity and result in abnormal rates of cell elongation. Together, our data indicate that PonA1 is a central determinant of polar growth in mycobacteria, and its governance of cell elongation is required for robust cell fitness during both host-induced and antibiotic stress.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Karen J. Kieser; Catherine Baranowski; Michael C. Chao; Jarukit E. Long; Christopher M. Sassetti; Matthew K. Waldor; James C. Sacchettini; Thomas R. Ioerger; Eric J. Rubin
Significance The rise of drug-resistant Mycobacterium tuberculosis (Mtb) underscores the critical need for a better understanding of essential physiological processes. Among these is cell-wall synthesis, the target of many antibiotics. To understand how Mtb orchestrates synthesis of its cell wall, we performed whole-genome interaction studies in cells with different peptidoglycan synthesis mutations. We found that different enzymes become required for bacterial growth in ΔponA1, ΔponA2, or ΔldtB cells, suggesting that discrete cell envelope biogenesis networks exist in Mtb. Furthermore, we show that these networks’ enzymes are differentially susceptible to cell-wall–active drugs. Our data provide insight into the essential processes of cell-wall synthesis in Mtb and highlight the role of different synthesis networks in antibiotic tolerance. Peptidoglycan (PG), a complex polymer composed of saccharide chains cross-linked by short peptides, is a critical component of the bacterial cell wall. PG synthesis has been extensively studied in model organisms but remains poorly understood in mycobacteria, a genus that includes the important human pathogen Mycobacterium tuberculosis (Mtb). The principle PG synthetic enzymes have similar and, at times, overlapping functions. To determine how these are functionally organized, we carried out whole-genome transposon mutagenesis screens in Mtb strains deleted for ponA1, ponA2, and ldtB, major PG synthetic enzymes. We identified distinct factors required to sustain bacterial growth in the absence of each of these enzymes. We find that even the homologs PonA1 and PonA2 have unique sets of genetic interactions, suggesting there are distinct PG synthesis pathways in Mtb. Either PonA1 or PonA2 is required for growth of Mtb, but both genetically interact with LdtB, which has its own distinct genetic network. We further provide evidence that each interaction network is differentially susceptible to antibiotics. Thus, Mtb uses alternative pathways to produce PG, each with its own biochemical characteristics and vulnerabilities.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Troy P. Hubbard; Michael C. Chao; Sören Abel; Carlos J. Blondel; Pia Abel zur Wiesch; Xiaohui Zhou; Brigid M. Davis; Matthew K. Waldor
Significance We conducted a genome-wide screen to identify bacterial factors required for Vibrio parahaemolyticus, an important cause of seafood-borne gastroenteritis, to survive in vitro and colonize the mammalian intestine. Our analysis revealed uncharacterized components of a horizontally acquired type III secretion system linked to virulence (T3SS2) and hundreds of genes that likely contribute to colonization independent of T3SS2. Our work revealed that toxR, a conserved gene in vibrios that governs expression of horizontally acquired virulence factors in Vibrio cholerae, was critical for expression of T3SS2. Thus, expression of disparate virulence-linked elements, acquired via lateral gene transfer in independently evolved pathogenic vibrios, is controlled by a common ancestral transcription factor. Vibrio parahaemolyticus is the most common cause of seafood-borne gastroenteritis worldwide and a blight on global aquaculture. This organism requires a horizontally acquired type III secretion system (T3SS2) to infect the small intestine, but knowledge of additional factors that underlie V. parahaemolyticus pathogenicity is limited. We used transposon-insertion sequencing to screen for genes that contribute to viability of V. parahaemolyticus in vitro and in the mammalian intestine. Our analysis enumerated and controlled for the host infection bottleneck, enabling robust assessment of genetic contributions to in vivo fitness. We identified genes that contribute to V. parahaemolyticus colonization of the intestine independent of known virulence mechanisms in addition to uncharacterized components of T3SS2. Our study revealed that toxR, an ancestral locus in Vibrio species, is required for V. parahaemolyticus fitness in vivo and for induction of T3SS2 gene expression. The regulatory mechanism by which V. parahaemolyticus ToxR activates expression of T3SS2 resembles Vibrio cholerae ToxR regulation of distinct virulence elements acquired via lateral gene transfer. Thus, disparate horizontally acquired virulence systems have been placed under the control of this ancestral transcription factor across independently evolved human pathogens.