Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael C. Cimino is active.

Publication


Featured researches published by Michael C. Cimino.


Mutation Research\/reviews in Genetic Toxicology | 1981

Sister-chromatid exchange: second report of the Gene-Tox program

James D. Tucker; Angela E. Auletta; Michael C. Cimino; Kerry L. Dearfield; David Jacobson-Kram; Raymond R. Tice; Anthony V. Carrano

This paper reviews the ability of a number of chemicals to induce sister-chromatid exchanges (SCEs). The SCE data for animal cells in vivo and in vitro, and human cells in vitro are presented in 6 tables according to their relative effectiveness. A seventh table summarizes what is known about the effects of specific chemicals on SCEs for humans exposed in vivo. The data support the concept that SCEs provide a useful indication of exposure, although the mechanism and biological significance of SCE formation still remain to be elucidated.


Mutation Research\/reviews in Genetic Toxicology | 1990

The in vivo micronucleus assay in mammalian bone marrow and peripheral blood. A report of the U.S. environmental protection agency gene-tox program

Kathleen H. Mavournin; David H. Blakey; Michael C. Cimino; Michael F. Salamone; John A. Heddle

The protocol recommended for the micronucleus assay in mammalian bone marrow has been revised and simplified. The number of sample times has been reduced to one or two, depending upon the dosing protocol. The minimum number of cells to be scored per treatment group has been increased to 20,000 to increase the ability of the assay to detect a doubling of the control micronucleus frequency. Use of both male and female animals is recommended. Scoring of micronuclei in polychromatic erythrocytes of peripheral blood is included as a variation of the bone marrow assay. Published data on chemicals tested by the micronucleus assay have been reviewed and are summarized.


Mutagenesis | 2009

Mutagenicity testing for chemical risk assessment: update of the WHO/IPCS Harmonized Scheme

David A. Eastmond; Andrea Hartwig; Diana Anderson; Wagida A. Anwar; Michael C. Cimino; Ivan Dobrev; George R. Douglas; Takehiko Nohmi; David H. Phillips; Carolyn Vickers

Since the publication of the International Programme on Chemical Safety (IPCS) Harmonized Scheme for Mutagenicity Testing, there have been a number of publications addressing test strategies for mutagenicity. Safety assessments of substances with regard to genotoxicity are generally based on a combination of tests to assess effects on three major end points of genetic damage associated with human disease: gene mutation, clastogenicity and aneuploidy. It is now clear from the results of international collaborative studies and the large databases that are currently available for the assays evaluated that no single assay can detect all genotoxic substances. The World Health Organization therefore decided to update the IPCS Harmonized Scheme for Mutagenicity Testing as part of the IPCS project on the Harmonization of Approaches to the Assessment of Risk from Exposure to Chemicals. The approach presented in this paper focuses on the identification of mutagens and genotoxic carcinogens. Selection of appropriate in vitro and in vivo tests as well as a strategy for germ cell testing are described.


Mutation Research\/reviews in Genetic Toxicology | 1991

Considerations in the U.S. Environmental Protection Agency's testing approach for mutagenicity

Kerry L. Dearfield; Angela E. Auletta; Michael C. Cimino; Martha M. Moore

OPP: This paper provides the rationale and support for the decisions the OPP will make in requiring and reviewing mutagenicity information. The regulatory requirement for mutagenicity testing to support a pesticide registration is found in the 40 CFR Part 158. The guidance as to the specific mutagenicity testing to be performed is found in the OPPs Pesticide Assessment Guidelines, Subdivision F, Hazard Evaluation: Human and Domestic Animals (referred to as the Subdivision F guideline). A revised Subdivision F guideline has been presented that becomes the current guidance for submitters of mutagenicity data to the OPP. The decision to revise the guideline was the result of close examination of the version published in 1982 and the desire to update the guidance based on developments since then and current state-of-the-science. After undergoing Agency and public scrutiny, the revised guideline is to be published in 1991. The revised guideline consists of an initial battery of tests (the Salmonella assay, an in vitro mammalian gene mutation assay and an in vivo cytogenetics assay which may be either a bone marrow assay for chromosomal aberrations or for micronuclei formation) that should provide an adequate initial assessment of the potential mutagenicity of a chemical. Follow-up testing to clarify results from the initial testing may be necessary. After this information as well as all other relevant information is obtained, a weight-of-evidence decision will be made about the possible mutagenicity concern a chemical may present. Testing to pursue qualitative and/or quantitative evidence for assessing heritable risk in relation to human beings will then be considered if a mutagenicity concern exists. This testing may range from tests for evidence of gonadal exposure to dominant lethal testing to quantitative tests such as the specific locus and heritable translocation assays. The mutagenicity assessment will be performed in accordance with the Agencys Mutagenicity Risk Assessment Guidelines. The mutagenicity data would also be used in the weight-of-evidence consideration for the potential carcinogenicity of a chemical in accordance with the Agencys Carcinogen Risk Assessment Guidelines. In instances where there are triggers for carcinogenicity testing, mutagenicity data may be used as one of the triggers after a consideration of available information. It is felt that the revised Subdivision F guideline will provide appropriate, and more specific, guidance concerning the OPP approach to mutagenicity testing for the registration of a pesticide. It also provides a clearer understanding of how the OPP will proceed with its evaluation and decision making concerning the potential heritable effects of a test chemical.(ABSTRACT TRUNCATED AT 400 WORDS)


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2002

Genotoxicity risk assessment: a proposed classification strategy

Kerry L. Dearfield; Michael C. Cimino; Nancy McCarroll; Irving Mauer; Lawrence R Valcovic

Recent advances in genetic toxicity (mutagenicity) testing methods and in approaches to performing risk assessment are prompting a renewed effort to harmonize genotoxicity risk assessment across the world. The US Environmental Protection Agency (EPA) first published Guidelines for Mutagenicity Risk Assessment in 1986 that focused mainly on transmissible germ cell genetic risk. Somatic cell genetic risk has also been a risk consideration, usually in support of carcinogenicity assessments. EPA and other international regulatory bodies have published mutagenicity testing requirements for agents (pesticides, pharmaceuticals, etc.) to generate data for use in genotoxicity risk assessments. The scheme that follows provides a proposed harmonization approach in which genotoxicity assessments are fully developed within the risk assessment paradigm used by EPA, and sets out a process that integrates newer thinking in testing battery design with the risk assessment process. A classification strategy for agents based on inherent genotoxicity, dose-responses observed in the data, and an exposure analysis is proposed. The classification leads to an initial level of concern for genotoxic risk to humans. A total risk characterization is performed using all relevant toxicity data and a comprehensive exposure evaluation in association with the genotoxicity data. The result of this characterization is ultimately used to generate a final level of concern for genotoxic risk to humans. The final level of concern and characterized genotoxicity risk assessment are communicated to decision makers for possible regulatory action(s) and to the public.


Mutation Research\/reviews in Genetic Toxicology | 1986

Aneuploidy in mammalian somatic cells in vivo

Michael C. Cimino; Raymond R. Tice; Jan C. Liang

Aneuploidy is an important potential source of human disease and of reproductive failure. Nevertheless, the ability of chemical agents to induce aneuploidy has been investigated only sporadically in intact (whole-animal) mammalian systems. A search of the available literature from the EMCT Aneuploidy File (for years 1970-1983) provided 112 papers that dealt with aneuploidy in mammalian somatic cells in vivo. 59 of these papers did not meet minimal criteria for analysis and were rejected from subsequent review. Of the remaining 53 papers that dealt with aneuploidy induction by chemical agents in mammalian somatic cells in vivo, only 3 (6%) contained data that were considered to be supported conclusively by adequate study designs, execution, and reporting. These 3 papers dealt with 2 chemicals, one of which, mercury, was negative for aneuploidy induction in humans, and the other, pyrimethamine, was positive in an experimental rodent study. The majority of papers (94%) were considered inconclusive for a variety of reasons. The most common reasons for calling a study inconclusive were (a) combining data on hyperploidy with those on hypoploidy and/or polyploidy, (b) an inadequate or unspecified number of animals and/or cells per animal scored per treatment group, and (c) poor data presentation such that animal-to-animal variability could not be assessed. Suggestions for protocol development are made, and the future directions of research into aneuploidy induction are discussed.


Environmental and Molecular Mutagenesis | 2011

Follow-Up Actions from Positive Results of In Vitro Genetic Toxicity Testing

Kerry L. Dearfield; Véronique Thybaud; Michael C. Cimino; Laura Custer; Andreas Czich; James Harvey; Susan D. Hester; James H. Kim; David Kirkland; Dan D. Levy; Elisabeth Lorge; Martha M. Moore; Gladys Ouédraogo-Arras; Maik Schuler; Willi Suter; Kevin Sweder; Kirk Tarlo; Jan van Benthem; Freddy Van Goethem; Kristine L. Witt

Appropriate follow‐up actions and decisions are needed when evaluating and interpreting clear positive results obtained in the in vitro assays used in the initial genotoxicity screening battery (i.e., the battery of tests generally required by regulatory authorities) to assist in overall risk‐based decision making concerning the potential effects of human exposure to the agent under test. Over the past few years, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow‐up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing developed a decision process flow chart to be applied in case of clear positive results in vitro. It provides for a variety of different possibilities and allows flexibility in choosing follow‐up action(s), depending on the results obtained in the initial battery of assays and available information. The intent of the Review Subgroup was not to provide a prescriptive testing strategy, but rather to reinforce the concept of weighing the totality of the evidence. The Review Subgroup of the IVGT committee highlighted the importance of properly analyzing the existing data, and considering potential confounding factors (e.g., possible interactions with the test systems, presence of impurities, irrelevant metabolism), and chemical modes of action when analyzing and interpreting positive results in the in vitro genotoxicity assays and determining appropriate follow‐up testing. The Review Subgroup also examined the characteristics, strengths, and limitations of each of the existing in vitro and in vivo genotoxicity assays to determine their usefulness in any follow‐up testing. Environ. Mol. Mutagen., 2011.


Environmental and Molecular Mutagenesis | 2008

An evaluation of the mode of action framework for mutagenic carcinogens case study: Cyclophosphamide

Nancy McCarroll; Nagalakshmi Keshava; Michael C. Cimino; Margaret Chu; Kerry L. Dearfield; Channa Keshava; Andrew D. Kligerman; Russell D. Owen; Alberto Protzel; Resha Putzrath; Rita Schoeny

In response to the 2005 revised US Environmental Protection Agency (EPA) Cancer Guidelines, a Risk Assessment Forums Technical Panel has devised a strategy in which genetic toxicology data combined with other information are assessed to determine whether a carcinogen operates through a mutagenic mode of action (MOA). This information is necessary for EPA to decide whether age‐dependent adjustment factors (ADAFs) should be applied to the cancer risk assessment. A decision tree has been developed as a part of this approach and outlines the critical steps for analyzing a compound for carcinogenicity through a mutagenic MOA (e.g., data analysis, determination of mutagenicity in animals and in humans). Agents, showing mutagenicity in animals and humans, proceed through the Agencys framework analysis for MOAs. Cyclophosphamide (CP), an antineoplastic agent, which is carcinogenic in animals and humans and mutagenic in vitro and in vivo, was selected as a case study to illustrate how the framework analysis would be applied to prove that a carcinogen operates through a mutagenic MOA. Consistent positive results have been seen for mutagenic activity in numerous in vitro assays, in animals (mice, rats, and hamsters) and in humans. Accordingly, CP was processed through the framework analysis and key steps leading to tumor formation were identified as follows: metabolism of the parent compound to alkylating metabolites, DNA damage followed by induction of multiple adverse genetic events, cell proliferation, and bladder tumors. Genetic changes in rats (sister chromatid exchanges at 0.62 mg/kg) can commence within 30 min and in cancer patients, chromosome aberrations at 35 mg/kg are seen by 1 hr, well within the timeframe and tumorigenic dose range for early events. Supporting evidence is also found for cell proliferation, indicating that mutagenicity, associated with cytotoxicity, leads to a proliferative response, which occurs early (48 hr) in the process of tumor induction. Overall, the weight of evidence evaluation supports CP acting through a mutagenic MOA. In addition, no data were found that an alternative MOA might be operative. Therefore, the cancer guidelines recommend a linear extrapolation for the risk assessment. Additionally, data exist showing that CP induces mutagenicity in fetal blood and in the peripheral blood of pediatric patients; thus, the ADAFs would be applied. Environ. Mol. Mutagen., 2008. Published 2008 Wiley‐Liss, Inc.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2011

Guidance for understanding solubility as a limiting factor for selecting the upper test concentration in the OECD In Vitro Micronucleus Assay Test Guideline No. 487

Marilyn J. Aardema; Sheila M. Galloway; Errol Zeiger; Michael C. Cimino; Makoto Hayashi

The OECD guideline for the in vitro mammalian cell micronucleus test (OECD 487) was recently adopted in July 22, 2010. Since its publication, it has become apparent that the guidance for testing chemicals where solubility is a limiting factor can be interpreted in a variety of ways. In this communication, we provide clarification for testing insoluble chemicals. The intent of the OECD 487 guideline is for the high dose to be the lowest precipitating concentration even if toxicity occurs above the solubility limit in tissue culture medium. Examination of precipitation can be done by the unaided eye or microscopically. Precipitation is examined at the onset or end of treatment, with the intent to identify precipitate present during treatment.


Environmental and Molecular Mutagenesis | 1991

Micronuclei as an index of cytogenetic damage: past, present, and future.

John A. Heddle; Michael C. Cimino; M. Hayashi; F. Romagna; Michael D. Shelby; James D. Tucker; Ph. Vanparys; James T. MacGregor

Collaboration


Dive into the Michael C. Cimino's collaboration.

Top Co-Authors

Avatar

Angela E. Auletta

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Kerry L. Dearfield

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Martha M. Moore

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Nancy McCarroll

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Irving Mauer

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawrence R Valcovic

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Raymond R. Tice

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Protzel

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge