Michael C. Wiest
Wellesley College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael C. Wiest.
Nature Neuroscience | 2003
Michael C. Wiest; Miguel A. L. Nicolelis
Prominent 7–12 Hz oscillations in the primary somatosensory cortex (S1) of awake but immobile rats might represent a seizure-like state in which neuronal burst firing renders animals unresponsive to incoming tactile stimuli; others have proposed that these oscillations are analogous to human μ rhythm. To test whether rats can respond to tactile stimuli during 7–12 Hz oscillatory activity, we trained head-immobilized awake animals to indicate whether they could detect the occurrence of transient whisker deflections while we recorded local field potentials (LFPs) from microelectrode arrays implanted bilaterally in the S1 whisker representation area. They responded rapidly and reliably, suggesting that this brain rhythm represents normal physiological activity that does not preclude perception.
The Journal of Neuroscience | 2007
Janaina Pantoja; Sidarta Ribeiro; Michael C. Wiest; Ernesto S. Soares; Damien Gervasoni; Nelson A. M. Lemos; Miguel A. L. Nicolelis
Delayed-response sensory discrimination is believed to require primary sensory thalamus and cortex for early stimulus identification and higher-order forebrain regions for the late association of stimuli with rewarded motor responses. Here we investigate neuronal responses in the rat primary somatosensory cortex (S1) and ventral posterior medial nucleus of the thalamus (VPM) during a tactile discrimination task that requires animals to associate two different tactile stimuli with two corresponding choices of spatial trajectory to be rewarded. To manipulate reward expectation, neuronal activity observed under regular reward contingency (CR) was compared with neuronal activity recorded during freely rewarded (FR) trials, in which animals obtained reward regardless of their choice of spatial trajectory. Across-trial firing rates of S1 and VPM neurons varied according to the reward contingency of the task. Analysis of neuronal ensemble activity by an artificial neural network showed that stimulus-related information in S1 and VPM increased from stimulus sampling to reward delivery in CR trials but decreased to chance levels when animals performed FR trials, when stimulus discrimination was irrelevant for task execution. Neuronal ensemble activity in VPM was only correlated with task performance during stimulus presentation. In contrast, S1 neuronal activity was highly correlated with task performance long after stimulus removal, a relationship that peaked during the 300 ms that preceded reward delivery. Together, our results indicate that neuronal activity in the primary somatosensory thalamocortical loop is strongly modulated by reward contingency.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Antonio Pereira; Sidarta Ribeiro; Michael C. Wiest; Leonardo C. Moore; Janaina Pantoja; Shih-Chieh Lin; Miguel A. L. Nicolelis
The ability to detect unusual events occurring in the environment is essential for survival. Several studies have pointed to the hippocampus as a key brain structure in novelty detection, a claim substantiated by its wide access to sensory information through the entorhinal cortex and also distinct aspects of its intrinsic circuitry. Novelty detection is implemented by an associative match–mismatch algorithm involving the CA1 and CA3 hippocampal subfields that compares the stream of sensory inputs received by CA1 to the stored representation of spatiotemporal sequences in CA3. In some rodents, including the rat, the highly sensitive facial whiskers are responsible for providing accurate tactile information about nearby objects. Surprisingly, however, not much is known about how inputs from the whiskers reach CA1 and how they are processed therein. Using concurrent multielectrode neuronal recordings and chemical inactivation in behaving rats, we show that trigeminal inputs from the whiskers reach the CA1 region through thalamic and cortical relays associated with discriminative touch. Ensembles of hippocampal neurons also carry precise information about stimulus identity when recorded during performance in an aperture-discrimination task using the whiskers. We also found broad similarities between tactile responses of trigeminal stations and the hippocampus during different vigilance states (wake and sleep). Taken together, our results show that tactile information associated with fine whisker discrimination is readily available to the hippocampus for dynamic updating of spatial maps.
The Journal of Neuroscience | 2013
Miguel Pais-Vieira; Mikhail A. Lebedev; Michael C. Wiest; Miguel A. L. Nicolelis
The rat somatosensory system contains multiple thalamocortical loops (TCLs) that altogether process, in fundamentally different ways, tactile stimuli delivered passively or actively sampled. To elucidate potential top-down mechanisms that govern TCL processing in awake, behaving animals, we simultaneously recorded neuronal ensemble activity across multiple cortical and thalamic areas while rats performed an active aperture discrimination task. Single neurons located in the primary somatosensory cortex (S1), the ventroposterior medial, and the posterior medial thalamic nuclei of the trigeminal somatosensory pathways exhibited prominent anticipatory firing modulations before the whiskers touching the aperture edges. This cortical and thalamic anticipatory firing could not be explained by whisker movements or whisker stimulation, because neither trigeminal ganglion sensory-evoked responses nor EMG activity were detected during the same period. Both thalamic and S1 anticipatory activity were predictive of the animals discrimination accuracy. Inactivation of the primary motor cortex (M1) with muscimol affected anticipatory patterns in S1 and the thalamus, and impaired the ability to predict the animals performance accuracy based on thalamocortical anticipatory activity. These findings suggest that neural processing in TCLs is launched in anticipation of whisker contact with objects, depends on top-down effects generated in part by M1 activity, and cannot be explained by the classical feedforward model of the rat trigeminal system.
Journal of Neurophysiology | 2010
Michael C. Wiest; Eric E. Thomson; Janaina Pantoja; Miguel A. L. Nicolelis
In freely moving rats that are actively performing a discrimination task, single-unit responses in primary somatosensory cortex (S1) are strikingly different from responses to comparable tactile stimuli in immobile rats. For example, in the active discrimination context prestimulus response modulations are common, responses are longer in duration and more likely to be inhibited. To determine whether these differences emerge as rats learned a whisker-dependent discrimination task, we recorded single-unit S1 activity while rats learned to discriminate aperture-widths using their whiskers. Even before discrimination training began, S1 responses in freely moving rats showed many of the signatures of active responses, such as increased duration of response and prestimulus response modulations. As rats subsequently learned the discrimination task, single unit responses changed: more cortical units responded to the stimuli, neuronal sensory responses grew in duration, and individual neurons better predicted aperture-width. In summary, the operant behavioral context changes S1 tactile responses even in the absence of tactile discrimination, whereas subsequent width discrimination learning refines the S1 representation of aperture-width.
Frontiers in Integrative Neuroscience | 2013
Allicia Imada; Allyn Morris; Michael C. Wiest
To better understand sensory processing in frontal and parietal cortex of the rat, and to further assess the rat as a model of human frontal-parietal processing, we recorded local field potentials (LFPs) from microelectrode arrays implanted in medio-dorsal frontal, and posterior parietal cortex of awake rats as they were presented with a succession of frequent “standard” tones and infrequent “oddball” tones. Extending previous results from surface recordings we found, after controlling for the frequencies of the standard and oddball tones, that rat frontal and parietal-evoked LFPs (eLFPs) exhibit significantly larger N1 (~40 ms latency), P2 (~100 ms), N2 (~160 ms), P3E (~200–240 ms), and P3L (~300–500 ms) amplitudes after an oddball tone. These neural oddball effects could contribute to the automatic allocation of attention to rare stimuli. To determine whether these enhanced responses to rare stimuli could be accounted for in terms of stimulus-specific neural adaptation (SSA), we also recorded during single-tone control sessions involving frequent standard, or infrequent oddball beeps alone. We compared the difference between rare-tone and frequent-tone response amplitudes in the two-tone context (oddball effect) or single-tone context which isolates the contribution of SSA (SSA effect). An analysis of variance (ANOVA) revealed a significant main effect of tone context on rare-tone response enhancements, showing that the rare-tone enhancements were stronger in the two-tone context than the single-tone context. This difference between tone contexts was greatest at the early P3E peak (200–240 ms post-beep) in parietal cortex, suggesting true deviance detection by this evoked response component, which cannot be accounted for in terms of simple models of SSA.
Journal of Neurophysiology | 2014
Linnea Herzog; Kia Salehi; Kaitlin S. Bohon; Michael C. Wiest
Electrophysiology in primates has implicated long-range neural coherence as a potential mechanism for enhancing sensory detection. To test whether local synchronization and long-range neural coherence support detection performance in rats, we recorded local field potentials (LFPs) in frontal and parietal cortex while rats performed an auditory detection task. We observed significantly elevated power at multiple low frequencies (<15 Hz) preceding the target beep when the animal failed to respond to the signal (misses), in both frontal and parietal cortex. In terms of long-range coherence, we observed significantly more frontal-parietal coherence in the beta band (15-30 Hz) before the signal on misses compared with hits. This effect persisted after regressing away linear trends in the coherence values during a session, showing that the excess frontal-parietal beta coherence prior to misses cannot be explained by slow motivational changes during a session. In addition, a trend toward higher low-frequency (<15 Hz) coherence prior to miss trials compared with hits became highly significant when we rereferenced the LFPs to the mean voltage on each recording array, suggesting that the results are specific to our frontal and parietal areas. These results do not support a role for long-range frontal-parietal coherence or local synchronization in facilitating the detection of external stimuli. Rather, they extend to long-range frontal-parietal coherence previous findings that correlate local synchronization of low-frequency (<15 Hz) oscillations with inattention to external stimuli and synchronization of beta rhythms (15-30 Hz) with voluntary or involuntary prolongation of the current cognitive or motor state.
PLOS ONE | 2014
Kaitlin S. Bohon; Michael C. Wiest
To further characterize the role of frontal and parietal cortices in rat cognition, we recorded action potentials simultaneously from multiple sites in the medio-dorsal frontal cortex and posterior parietal cortex of rats while they performed a two-choice auditory detection task. We quantified neural correlates of task performance, including response movements, perception of a target tone, and the differentiation between stimuli with distinct features (different pitches or durations). A minority of units—15% in frontal cortex, 23% in parietal cortex—significantly distinguished hit trials (successful detections, response movement to the right) from correct rejection trials (correct leftward response to the absence of the target tone). Estimating the contribution of movement-related activity to these responses suggested that more than half of these units were likely signaling correct perception of the auditory target, rather than merely movement direction. In addition, we found a smaller and mostly not overlapping population of units that differentiated stimuli based on task-irrelevant details. The detection-related spiking responses we observed suggest that correlates of perception in the rat are sparsely represented among neurons in the rats frontal-parietal network, without being concentrated preferentially in frontal or parietal areas.
The Senses: A Comprehensive Reference | 2008
Michael C. Wiest; Eric E. Thomson; Miguel A. L. Nicolelis
Chronic multielectrode recording methods introduced 25 years ago have opened up the opportunity to simultaneously sample the activity of neurons at multiple levels of the somatosensory system while rats engage in active tactile behaviors. This chapter focuses on results gleaned from recordings in the rat whisker system. The earliest multielectrode investigations revealed that the peak of neural activity evoked by single-whisker stimuli drifts widely over the cortical and thalamic somatotopic whisker maps. This property could provide a mechanism for recognizing spatiotemporal patterns of whisker stimulation. These studies also showed that information about tactile stimulus identity is carried by the relative latencies of evoked spikes in different simultaneously recorded neurons. Subsequent experiments also revealed highly synchronized firing in neurons from brainstem to cortex, and immediate receptive field reorganization in thalamus induced by partial deafferentation or reversible inactivation of primary somatosensory cortex (S1). Even the two hemispheres of S1, long viewed as independent modules for processing exclusively contralateral stimuli, were found to interact on millisecond timescales in anesthetized and waking rats. This later finding suggested that the brain combines bilateral whisker afferents to discriminate bilateral whisker stimuli – such as the widths of tunnel openings in the dark – an idea that was confirmed by the development of bilateral tactile discrimination tasks. Multielectrode recordings during tactile discrimination revealed qualitatively distinct response modes in S1 as compared to responses to passive whisker stimulation, including task-related firing rate modulations that begin well before whisker stimulation. These data have pushed our conception of somatosensory representation – even at the earliest thalamic and cortical processing stages – away from the static classical one-barrel/one-whisker picture, toward that of a highly plastic multilevel structure whose functional architecture quickly adjusts to meet the demands of the present situation.
NeuroImage | 2002
P. Read Montague; Gregory S. Berns; Jonathan D. Cohen; Samuel M. McClure; Giuseppe Pagnoni; Mukesh Dhamala; Michael C. Wiest; Igor Karpov; Richard D. King; Nathan Apple; Ronald E. Fisher