Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Christiansen is active.

Publication


Featured researches published by Michael Christiansen.


European Heart Journal | 2008

Sudden arrhythmic death syndrome: familial evaluation identifies inheritable heart disease in the majority of families

Elijah R. Behr; Chrysoula Dalageorgou; Michael Christiansen; Petros Syrris; Sian Hughes; Maria Teresa Tome Esteban; Edward Rowland; Steve Jeffery; William J. McKenna

AIMS At least 4% of sudden deaths are unexplained at autopsy [sudden arrhythmic death syndrome (SADS)] and a quarter may be due to inherited cardiac disease. We hypothesized that comprehensive clinical investigation of SADS families would identify more susceptible individuals and causes of death. METHODS AND RESULTS Fifty seven consecutively referred families with SADS death underwent evaluation including resting 12 lead, 24 h and exercise ECG and 2D echocardiography. Other investigations included signal averaged ECG, ajmaline testing, cardiac magnetic resonance imaging, and mutation analysis. First-degree relatives [184/262 (70%)] underwent evaluation, 13 (7%) reporting unexplained syncope. Seventeen (30%) families had a history of additional unexplained premature sudden death(s). Thirty families (53%) were diagnosed with inheritable heart disease: 13 definite long QT syndrome (LQTS), three possible/probable LQTS, five Brugada syndrome, five arrhythmogenic right ventricular cardiomyopathy (ARVC), and four other cardiomyopathies. One SCN5A and four KCNH2 mutations (38%) were identified in 13 definite LQTS families, one SCN5A mutation (20%) in five Brugada syndrome families and one (25%) PKP2 (plakophyllin2) mutation in four ARVC families. CONCLUSION Over half of SADS deaths were likely to be due to inherited heart disease; accurate identification is vital for appropriate prophylaxis amongst relatives who should undergo comprehensive cardiological evaluation, guided and confirmed by mutation analysis.


Human Mutation | 2009

The genetic basis of long QT and short QT syndromes: A mutation update†

Paula L. Hedley; Poul Jørgensen; Sarah Schlamowitz; Romilda Wangari; Johanna C. Moolman-Smook; Paul A. Brink; Valerie A. Corfield; Michael Christiansen

Long QT and short QT syndromes (LQTS and SQTS) are cardiac repolarization abnormalities that are characterized by length perturbations of the QT interval as measured on electrocardiogram (ECG). Prolonged QT interval and a propensity for ventricular tachycardia of the torsades de pointes (TdP) type are characteristic of LQTS, while SQTS is characterized by shortened QT interval with tall peaked T‐waves and a propensity for atrial fibrillation. Both syndromes represent a high risk for syncope and sudden death. LQTS exists as a congenital genetic disease (cLQTS) with more than 700 mutations described in 12 genes (LQT1–12), but can also be acquired (aLQTS). The genetic forms of LQTS include Romano‐Ward syndrome (RWS), which is characterized by isolated LQTS and an autosomal dominant pattern of inheritance, and syndromes with LQTS in association with other conditions. The latter includes Jervell and Lange‐Nielsen syndrome (JLNS), Andersen syndrome (AS), and Timothy syndrome (TS). The genetics are further complicated by the occurrence of double and triple heterozygotes in LQTS and a considerable number of nonpathogenic rare polymorphisms in the involved genes. SQTS is a very rare condition, caused by mutations in five genes (SQTS1–5). The present mutation update is a comprehensive description of all known LQTS‐ and SQTS‐associated mutations. Hum Mutat 30:1486–1511, 2009.


Circulation-arrhythmia and Electrophysiology | 2008

Functional Effects of KCNE3 Mutation and Its Role in the Development of Brugada Syndrome

Eva Delpón; Jonathan M. Cordeiro; Lucía Núñez; Poul Erik Bloch Thomsen; Alejandra Guerchicoff; Guido D. Pollevick; Yuesheng Wu; Carsten Toftager Larsen; Elena Burashnikov; Michael Christiansen; Charles Antzelevitch

Background— The Brugada syndrome, an inherited syndrome associated with a high incidence of sudden cardiac arrest, has been linked to mutations in 4 different genes, leading to a loss of function in sodium and calcium channel activity. Although the transient outward current (Ito) is thought to play a prominent role in the expression of the syndrome, mutations in Ito-related genes have not been identified as yet. Methods and Results— One hundred five probands with the Brugada syndrome were screened for ion channel gene mutations using single-strand conformation polymorphism electrophoresis and direct sequencing. A missense mutation (R99H) in KCNE3 (MiRP2) was detected in 1 proband. The R99H mutation was found 4/4 phenotype-positive and 0/3 phenotype-negative family members. Chinese hamster ovary-K1 cells were cotransfected using wild-type (WT) or mutant KCNE3 and either WT KCND3 or KCNQ1. Whole-cell patch clamp studies were performed after 48 hours. Interactions between Kv4.3 and KCNE3 were analyzed in coimmunoprecipitation experiments in human atrial samples. Cotransfection of R99H-KCNE3 with KCNQ1 produced no alteration in tail current magnitude or kinetics. However, cotransfection of R99H KCNE3 with KCND3 resulted in a significant increase in the Ito intensity compared with WT KCNE3+KCND3. Using tissues isolated from the left atrial appendages of human hearts, we also demonstrate that Kv4.3 and KCNE3 can be coimmunoprecipitated. Conclusions— These results provide definitive evidence for a functional role of KCNE3 in the modulation of Ito in the human heart and suggest that mutations in KCNE3 can underlie the development of the Brugada syndrome.


American Journal of Human Genetics | 2012

Mutations in Calmodulin Cause Ventricular Tachycardia and Sudden Cardiac Death

Mette Nyegaard; Michael Toft Overgaard; Mads Toft Søndergaard; Marta Vranas; Elijah R. Behr; Lasse Hildebrandt; Jacob Lund; Paula L. Hedley; A. John Camm; Göran Wettrell; Inger Fosdal; Michael Christiansen; Anders D. Børglum

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe dominantly inherited form of CPVT-like arrhythmias, we mapped the disease locus to chromosome 14q31-32. Sequencing CALM1 encoding calmodulin revealed a heterozygous missense mutation (c.161A>T [p.Asn53Ile]) segregating with the disease. A second, de novo, missense mutation (c.293A>G [p.Asn97Ser]) was subsequently identified in an individual of Iraqi origin; this individual was diagnosed with CPVT from a screening of 61 arrhythmia samples with no identified RYR2 mutations. Both CALM1 substitutions demonstrated compromised calcium binding, and p.Asn97Ser displayed an aberrant interaction with the RYR2 calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac death.


Journal of Clinical Investigation | 2008

The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome

Naomasa Makita; Elijah R. Behr; Wataru Shimizu; Minoru Horie; Akihiko Sunami; Lia Crotti; Eric Schulze-Bahr; Shigetomo Fukuhara; Naoki Mochizuki; Takeru Makiyama; Hideki Itoh; Michael Christiansen; Pascal McKeown; Koji Miyamoto; Shiro Kamakura; Hiroyuki Tsutsui; Peter J. Schwartz; Alfred L. George; Dan M. Roden

Phenotypic overlap of type 3 long QT syndrome (LQT3) with Brugada syndrome (BrS) is observed in some carriers of mutations in the Na channel SCN5A. While this overlap is important for patient management, the clinical features, prevalence, and mechanisms underlying such overlap have not been fully elucidated. To investigate the basis for this overlap, we genotyped a cohort of 44 LQT3 families of multiple ethnicities from 7 referral centers and found a high prevalence of the E1784K mutation in SCN5A. Of 41 E1784K carriers, 93% had LQT3, 22% had BrS, and 39% had sinus node dysfunction. Heterologously expressed E1784K channels showed a 15.0-mV negative shift in the voltage dependence of Na channel inactivation and a 7.5-fold increase in flecainide affinity for resting-state channels, properties also seen with other LQT3 mutations associated with a mixed clinical phenotype. Furthermore, these properties were absent in Na channels harboring the T1304M mutation, which is associated with LQT3 without a mixed clinical phenotype. These results suggest that a negative shift of steady-state Na channel inactivation and enhanced tonic block by class IC drugs represent common biophysical mechanisms underlying the phenotypic overlap of LQT3 and BrS and further indicate that class IC drugs should be avoided in patients with Na channels displaying these behaviors.


Journal of Biological Chemistry | 2000

Expression of Recombinant Human Pregnancy-Associated Plasma Protein-A and Identification of the Proform of Eosinophil Major Basic Protein as its Physiological Inhibitor*

Michael Toft Overgaard; Jesper Haaning; Henning B. Boldt; Inger Marie Olsen; Lisbeth S. Laursen; Michael Christiansen; Gerald J. Gleich; Cheryl A. Conover; Claus Oxvig

Pregnancy-associated plasma protein-A (PAPP-A), originally known from human pregnancy serum, has recently been demonstrated to be a metzincin superfamily metalloproteinase involved in normal and pathological insulin-like growth factor (IGF) physiology. PAPP-A specifically cleaves IGF-binding protein (IGFBP)-4, one of six antagonists of IGF action, which results in release of IGF bound to IGFBP-4. IGFBP-4 is the only known PAPP-A substrate. Its cleavage by PAPP-A uniquely depends on the presence of IGF. We here report mammalian expression and purification of recombinant 1547-residue PAPP-A (rPAPP-A). The recombinant protein is secreted as a homodimer of about 400 kDa composed of two 200-kDa disulfide-bound subunits. Antigenically and functionally, rPAPP-A behaves like the native protein. In human pregnancy, PAPP-A is known to circulate as a 500-kDa disulfide-bound 2:2 complex with the proform of eosinophil major basic protein (proMBP), PAPP-A/proMBP. A comparison between rPAPP-A and pregnancy serum PAPP-A/proMBP complex surprisingly reveals a difference greater than 100-fold in proteolytic activity, showing that proMBP functions as a proteinase inhibitor in vivo. We find that polyclonal antibodies against PAPP-A abrogate all detectable IGFBP-4 proteolytic activity in pregnancy serum, pointing at PAPP-A as the dominating, if not the only, IGFBP-4 proteinase present in the circulation. We further show that pregnancy serum and plasma contain traces (<1%) of uncomplexed PAPP-A with a much higher specific activity than the PAPP-A/proMBP complex. The measurable activity of the PAPP-A/proMBP complex probably results from the presence of a minor subpopulation of partly inhibited PAPP-A that exists in a 2:1 complex with proMBP. Inhibition of PAPP-A by proMBP represents a novel inhibitory mechanism with the enzyme irreversibly bound to its inhibitor by disulfide bonds.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2001

Insulin-like growth factor binding protein-4 protease produced by smooth muscle cells increases in the coronary artery after angioplasty

Antoni Bayes-Genis; Robert S. Schwartz; Debra A. Lewis; Michael Toft Overgaard; Michael Christiansen; Claus Oxvig; Khalid Ashai; David R. Holmes; Cheryl A. Conover

Abstract —Insulin-like growth factor (IGF)-I stimulates vascular smooth muscle cell (VSMC) migration and proliferation, which are fundamental to neointimal hyperplasia in postangioplasty restenosis. IGF-I action is modulated by several high-affinity IGF binding proteins (IGFBPs). IGFBP-4 is the predominant IGFBP produced by VSMCs and is a potent inhibitor of IGF-I action. However, specific IGFBP-4 proteases can cleave IGFBP-4 and liberate active IGF-I. In this study, we document IGFBP-4 protease produced by human and porcine coronary artery VSMCs in culture as pregnancy-associated plasma protein-A (PAPP-A). This was shown by a distinctive IGFBP-4 cleavage pattern, specific inhibition of IGFBP-4 protease activity with PAPP-A polyclonal antibodies, and immunorecognition of PAPP-A by monoclonal antibodies. Furthermore, we found a 2-fold increase in IGFBP-4 protease activity in injured porcine VSMC cultures in vitro (P <0.05). We also evaluated IGFBP-4 protease/PAPP-A expression in vivo after coronary artery balloon injury. Twenty-five immature female pigs underwent coronary overstretch balloon injury, and vessels were examined at defined time points after the procedure. Abundant PAPP-A expression was observed in the cytoplasm of medial and neointimal cells 7, 14, and 28 days after angioplasty (P <0.01 vs control). The highest PAPP-A labeling indices were located in the neointima (36.1±2.1%) and the media (31.7±1.2%) 28 days after injury. Western blot analysis confirmed increased PAPP-A in injured vessels. PAPP-A, a regulator of IGF-I bioavailability through proteolysis of IGFBP-4, is thus expressed by VSMCs in vitro and in restenotic lesions in vivo. These results suggest a possible role for PAPP-A in neointimal hyperplasia.


Human Mutation | 2009

The genetic basis of Brugada syndrome: A mutation update

Paula L. Hedley; Poul Jørgensen; Sarah Schlamowitz; Johanna C. Moolman-Smook; Valerie A. Corfield; Michael Christiansen

Brugada syndrome (BrS) is a condition characterized by a distinct ST‐segment elevation in the right precordial leads of the electrocardiogram and, clinically, by an increased risk of cardiac arrhythmia and sudden death. The condition predominantly exhibits an autosomal dominant pattern of inheritance with an average prevalence of 5:10,000 worldwide. Currently, more than 100 mutations in seven genes have been associated with BrS. Loss‐of‐function mutations in SCN5A, which encodes the α‐subunit of the Nav1.5 sodium ion channel conducting the depolarizing INa current, causes 15–20% of BrS cases. A few mutations have been described in GPD1L, which encodes glycerol‐3‐phosphate dehydrogenase‐1 like protein; CACNA1C, which encodes the α‐subunit of the Cav1.2 ion channel conducting the depolarizing IL,Ca current; CACNB2, which encodes the stimulating β2‐subunit of the Cav1.2 ion channel; SCN1B and SCN3B, which, in the heart, encodes β‐subunits of the Nav1.5 sodium ion channel, and KCNE3, which encodes the ancillary inhibitory β‐subunit of several potassium channels including the Kv4.3 ion channel conducting the repolarizing potassium Ito current. BrS exhibits variable expressivity, reduced penetrance, and “mixed phenotypes,” where families contain members with BrS as well as long QT syndrome, atrial fibrillation, short QT syndrome, conduction disease, or structural heart disease, have also been described. Hum Mutat 30:1–11, 2009.


Obstetrics & Gynecology | 2005

Reduction of the disintegrin and metalloprotease ADAM12 in preeclampsia.

Jennie Laigaard; Tina Sørensen; Sophie Placing; Peter Holck; Camilla Fröhlich; K. R. Wøjdemann; Karin Sundberg; A. C. Shalmi; Ann Tabor; Bent Nørgaard-Pedersen; Bent Ottesen; Michael Christiansen; Ulla M. Wewer

Objectives: The secreted form of ADAM12 is a metalloprotease that may be involved in placental and fetal growth. We examined whether the concentration of ADAM12 in first-trimester maternal serum could be used as a marker for preeclampsia. Methods: We developed a semiautomated, time-resolved, immunofluorometric assay for the quantification of ADAM12 in serum. The assay detected ADAM12 in a range of 78–1248 &mgr;g/L. Serum samples derived from women in the first trimester of a normal pregnancy (n = 324) and from women who later developed preeclampsia during pregnancy (n = 160) were obtained from the First Trimester Copenhagen Study. ADAM12 levels were assayed in these serum samples. Serum levels of ADAM12 were converted to multiples of the median (MoM) after log-linear regression of concentration versus gestational age. Results: Serum ADAM12 levels in women who developed preeclampsia during pregnancy had a mean log MoM of –0.066, which was significantly lower than the mean log MoM of –0.001 for ADAM12 levels observed in serum samples from women with normal pregnancy (P = .008). The mean log MoM was even lower in serum derived from preeclamptic women whose infants weight at birth was less than 2,500 g (n = 27, mean log MoM of –0.120, P = .053). Conclusion: The maternal serum levels of ADAM12 are significantly lower during the first trimester in women who later develop preeclampsia during pregnancy when compared with levels in women with normal pregnancies. Because the secreted form of ADAM12 cleaves insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5, the IGF axis may play a role in preeclampsia. ADAM12 may be a useful early marker for preeclampsia. Level of Evidence: II-2


Human Mutation | 2009

Diagnostic yield, interpretation, and clinical utility of mutation screening of sarcomere encoding genes in Danish hypertrophic cardiomyopathy patients and relatives.

Paal Skytt Andersen; Ole Havndrup; Lotte Hougs; Karina Meden Sørensen; Morten Jensen; Lars Allan Larsen; Paula L. Hedley; Alex Rojas Bie Thomsen; Johanna C. Moolman-Smook; Michael Christiansen; Henning Bundgaard

The American Heart Association (AHA) recommends family screening for hypertrophic cardiomyopathy (HCM). We assessed the outcome of family screening combining clinical evaluation and screening for sarcomere gene mutations in a cohort of 90 Danish HCM patients and their close relatives, in all 451 persons. Index patients were screened for mutations in all coding regions of 10 sarcomere genes (MYH7, MYL3, MYBPC3, TNNI3, TNNT2, TPM1, ACTC, CSRP3, TCAP, and TNNC1) and five exons of TTN. Relatives were screened for presence of minor or major diagnostic criteria for HCM and tracking of DNA variants was performed. In total, 297 adult relatives (>18 years) (51.2%) fulfilled one or more criteria for HCM. A total of 38 HCM‐causing mutations were detected in 32 index patients. Six patients carried two disease‐associated mutations. Twenty‐two mutations have only been identified in the present cohort. The genetic diagnostic yield was almost twice as high in familial HCM (53%) vs. HCM of sporadic or unclear inheritance (19%). The yield was highest in families with an additional history of HCM‐related clinical events. In relatives, 29.9% of mutation carriers did not fulfil any clinical diagnostic criterion, and in 37.5% of relatives without a mutation, one or more criteria was fulfilled. A total of 60% of family members had no mutation and could be reassured and further follow‐up ceased. Genetic diagnosis may be established in approximately 40% of families with the highest yield in familial HCM with clinical events. Mutation‐screening was superior to clinical investigation in identification of individuals not at increased risk, where follow‐up is redundant, but should be offered in all families with relatives at risk for developing HCM. Hum Mutat 0,1–8, 2008.

Collaboration


Dive into the Michael Christiansen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Tabor

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henning Bundgaard

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ole Havndrup

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Vuust

Statens Serum Institut

View shared research outputs
Researchain Logo
Decentralizing Knowledge