Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Chvanov is active.

Publication


Featured researches published by Michael Chvanov.


Journal of Biological Chemistry | 2006

Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells

Dabid N. Criddle; Stuart Gillies; Heidi K. Baumgartner-Wilson; Mohammed Jaffar; Edwin C. Chinje; Sarah Passmore; Michael Chvanov; Stephanie L. Barrow; Oleg Vsevolodovich Gerasimenko; Alexei V. Tepikin; Robert Sutton; O. H. Petersen

Oxidative stress may be an important determinant of the severity of acute pancreatitis. One-electron reduction of oxidants generates reactive oxygen species (ROS) via redox cycling, whereas two-electron detoxification, e.g. by NAD(P)H:quinone oxidoreductase, does not. The actions of menadione on ROS production and cell fate were compared with those of a non-cycling analogue (2,4-dimethoxy-2-methylnaphthalene (DMN)) using real-time confocal microscopy of isolated perfused murine pancreatic acinar cells. Menadione generated ROS with a concomitant decrease of NAD(P)H, consistent with redox cycling. The elevation of ROS was prevented by the antioxidant N-acetyl-l-cysteine but not by the NADPH oxidase inhibitor diphenyliodonium. DMN produced no change in reactive oxygen species per se but significantly potentiated menadione-induced effects, probably via enhancement of one-electron reduction, since DMN was found to inhibit NAD(P)H:quinone oxidoreductase detoxification. Menadione caused apoptosis of pancreatic acinar cells that was significantly potentiated by DMN, whereas DMN alone had no effect. Furthermore, bile acid (taurolithocholic acid 3-sulfate)-induced caspase activation was also greatly increased by DMN, whereas DMN had no effect per se. These results suggest that acute generation of ROS by menadione occurs via redox cycling, the net effect of which is induction of apoptotic pancreatic acinar cell death. Two-electron detoxifying enzymes such as NAD(P)H:quinone oxidoreductase, which are elevated in pancreatitis, may provide protection against excessive ROS and exert an important role in determining acinar cell fate.


Biochemical Journal | 2010

Role of phosphoinositides in STIM1 dynamics and store-operated calcium entry

Ciara M. Walsh; Michael Chvanov; Lee P. Haynes; O. H. Petersen; Alexei V. Tepikin; Robert D. Burgoyne

Ca2+ entry through store-operated Ca2+ channels involves the interaction at ER–PM (endoplasmic reticulum–plasma membrane) junctions of STIM (stromal interaction molecule) and Orai. STIM proteins are sensors of the luminal ER Ca2+ concentration and, following depletion of ER Ca2+, they oligomerize and translocate to ER–PM junctions where they form STIM puncta. Direct binding to Orai proteins activates their Ca2+ channel function. It has been suggested that an additional interaction of the C-terminal polybasic domain of STIM1 with PM phosphoinositides could contribute to STIM1 puncta formation prior to binding to Orai. In the present study, we investigated the role of phosphoinositides in the formation of STIM1 puncta and SOCE (store-operated Ca2+ entry) in response to store depletion. Treatment of HeLa cells with inhibitors of PI3K (phosphatidylinositol 3-kinase) and PI4K (phosphatidylinositol 4-kinase) (wortmannin and LY294002) partially inhibited formation of STIM1 puncta. Additional rapid depletion of PtdIns(4,5)P2 resulted in more substantial inhibition of the translocation of STIM1–EYFP (enhanced yellow fluorescent protein) into puncta. The inhibition was extensive at a concentration of LY294002 (50 μM) that should primarily inhibit PI3K, consistent with a major role for PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in puncta formation. Depletion of phosphoinositides also inhibited SOCE based on measurement of the rise in intracellular Ca2+ concentration after store depletion. Overexpression of Orai1 resulted in a recovery of translocation of STMI1 into puncta following phosphoinositide depletion and, under these conditions, SOCE was increased to above control levels. These observations support the idea that phosphoinositides are not essential but contribute to STIM1 accumulation at ER–PM junctions with a second translocation mechanism involving direct STIM1–Orai interactions.


Biochimica et Biophysica Acta | 2009

Modulation of calcium signalling by mitochondria

Ciara M. Walsh; Stephanie L. Barrow; Svetlana Voronina; Michael Chvanov; O. H. Petersen; Alexei V. Tepikin

In this review we will attempt to summarise the complex and sometimes contradictory effects that mitochondria have on different forms of calcium signalling. Mitochondria can influence Ca(2+) signalling indirectly by changing the concentration of ATP, NAD(P)H, pyruvate and reactive oxygen species - which in turn modulate components of the Ca(2+) signalling machinery i.e. buffering, release from internal stores, influx from the extracellular solution, uptake into cellular organelles and extrusion by plasma membrane Ca(2+) pumps. Mitochondria can directly influence the calcium concentration in the cytosol of the cell by importing Ca(2+) via the mitochondrial Ca(2+) uniporter or transporting Ca(2+) from the interior of the organelle into the cytosol by means of Na+/Ca(2+) or H+/Ca(2+) exchangers. Considerable progress in understanding the relationship between Ca(2+) signalling cascades and mitochondrial physiology has been accumulated over the last few years due to the development of more advanced optical techniques and electrophysiological approaches.


Philosophical Transactions of the Royal Society B | 2005

Free radicals and the pancreatic acinar cells: role in physiology and pathology

Michael Chvanov; O. H. Petersen; Alexei V. Tepikin

Reactive oxygen and nitrogen species (ROS and RNS) play an important role in signal transduction and cell injury processes. Nitric oxide synthase (NOS)—the key enzyme producing nitric oxide (NO)—is found in neuronal structures, vascular endothelium and, possibly, in acinar and ductal epithelial cells in the pancreas. NO is known to regulate cell homeostasis, and its effects on the acinar cells are reviewed here. ROS are implicated in the early events within the acinar cells, leading to the development of acute pancreatitis. The available data on ROS/RNS involvement in the apoptotic and necrotic death of pancreatic acinar cells will be discussed.


Gut | 2014

Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute pancreatitis

Wei Huang; David Booth; Matthew C Cane; Michael Chvanov; M.A. Javed; Victoria Elliott; Jane Armstrong; Hayley Dingsdale; Nicole Cash; Yan Li; William Greenhalf; Rajarshi Mukherjee; Bhupendra S. Kaphalia; Mohammed Jaffar; Ole Holger Petersen; Alexei V. Tepikin; Robert Sutton; David N. Criddle

Objective Non-oxidative metabolism of ethanol (NOME) produces fatty acid ethyl esters (FAEEs) via carboxylester lipase (CEL) and other enzyme action implicated in mitochondrial injury and acute pancreatitis (AP). This study investigated the relative importance of oxidative and non-oxidative pathways in mitochondrial dysfunction, pancreatic damage and development of alcoholic AP, and whether deleterious effects of NOME are preventable. Design Intracellular calcium ([Ca2+]C), NAD(P)H, mitochondrial membrane potential and activation of apoptotic and necrotic cell death pathways were examined in isolated pancreatic acinar cells in response to ethanol and/or palmitoleic acid (POA) in the presence or absence of 4-methylpyrazole (4-MP) to inhibit oxidative metabolism. A novel in vivo model of alcoholic AP induced by intraperitoneal administration of ethanol and POA was developed to assess the effects of manipulating alcohol metabolism. Results Inhibition of OME with 4-MP converted predominantly transient [Ca2+]C rises induced by low ethanol/POA combination to sustained elevations, with concurrent mitochondrial depolarisation, fall of NAD(P)H and cellular necrosis in vitro. All effects were prevented by 3-benzyl-6-chloro-2-pyrone (3-BCP), a CEL inhibitor. 3-BCP also significantly inhibited rises of pancreatic FAEE in vivo and ameliorated acute pancreatic damage and inflammation induced by administration of ethanol and POA to mice. Conclusions A combination of low ethanol and fatty acid that did not exert deleterious effects per se became toxic when oxidative metabolism was inhibited. The in vitro and in vivo damage was markedly inhibited by blockade of CEL, indicating the potential for development of specific therapy for treatment of alcoholic AP via inhibition of FAEE generation.


Gut | 2016

Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP

Rajarshi Mukherjee; Olga A. Mareninova; Irina V. Odinokova; Wei Huang; J. A. Murphy; Michael Chvanov; M.A. Javed; Li Wen; David Booth; Matthew C Cane; Muhammad Awais; Bruno Gavillet; Rebecca M. Pruss; Sophie Schaller; Jeffery D. Molkentin; Alexei V. Tepikin; Ole Holger Petersen; Stephen J. Pandol; Ilya Gukovsky; David N. Criddle; Anna S. Gukovskaya; Robert Sutton

Objective Acute pancreatitis is caused by toxins that induce acinar cell calcium overload, zymogen activation, cytokine release and cell death, yet is without specific drug therapy. Mitochondrial dysfunction has been implicated but the mechanism not established. Design We investigated the mechanism of induction and consequences of the mitochondrial permeability transition pore (MPTP) in the pancreas using cell biological methods including confocal microscopy, patch clamp technology and multiple clinically representative disease models. Effects of genetic and pharmacological inhibition of the MPTP were examined in isolated murine and human pancreatic acinar cells, and in hyperstimulation, bile acid, alcoholic and choline-deficient, ethionine-supplemented acute pancreatitis. Results MPTP opening was mediated by toxin-induced inositol trisphosphate and ryanodine receptor calcium channel release, and resulted in diminished ATP production, leading to impaired calcium clearance, defective autophagy, zymogen activation, cytokine production, phosphoglycerate mutase 5 activation and necrosis, which was prevented by intracellular ATP supplementation. When MPTP opening was inhibited genetically or pharmacologically, all biochemical, immunological and histopathological responses of acute pancreatitis in all four models were reduced or abolished. Conclusions This work demonstrates the mechanism and consequences of MPTP opening to be fundamental to multiple forms of acute pancreatitis and validates the MPTP as a drug target for this disease.


The EMBO Journal | 2006

Calcium‐dependent release of NO from intracellular S‐nitrosothiols

Michael Chvanov; Oleg Vsevolodovich Gerasimenko; O. H. Petersen; Alexei V. Tepikin

The paper describes a novel cellular mechanism for rapid calcium‐dependent nitric oxide (NO) release. This release occurs due to NO liberation from S‐nitrosothiols. We have analysed the changes of NO concentration in acutely isolated pancreatic acinar cells. Supramaximal acetylcholine (ACh) stimulation induced a Ca2+‐dependent increase in the fluorescence in the majority of cells loaded with the NO probe DAF‐FM via a patch pipette. The ACh‐induced NO signals were insensitive to inhibitors of calmodulin and protein kinase C but were inhibited by calpain antagonists. The initial part of the NO signals induced by 10 μM ACh showed little sensitivity to inhibition of NO synthase (NOS); however, cell pretreatment with NO donors (increasing cellular S‐nitrosothiol contents) substantially enhanced the initial component of NO responses. Pancreatic acinar cells were able to generate fast calcium‐dependent NO responses when stimulated with physiological or supramaximal doses of secretagogues. Importantly, the source of this NO is the already available S‐nitrosothiol store rather than de novo synthesis by NOS. A similar mechanism of NO release was found in dorsal root ganglia neurons.


Pflügers Archiv: European Journal of Physiology | 2008

ATP depletion induces translocation of STIM1 to puncta and formation of STIM1–ORAI1 clusters: translocation and re-translocation of STIM1 does not require ATP

Michael Chvanov; Ciara M. Walsh; Lee P. Haynes; Svetlana Voronina; Gyorgy Lur; Oleg Vsevolodovich Gerasimenko; Roger Barraclough; Philip S. Rudland; O. H. Petersen; Robert D. Burgoyne; Alexei V. Tepikin

Depletion of the endoplasmic reticulum (ER) calcium store triggers translocation of stromal interacting molecule one (STIM1) to the sub-plasmalemmal region and formation of puncta—structures in which STIM1 interacts and activates calcium channels. ATP depletion induced the formation of STIM1 puncta in PANC1, RAMA37, and HeLa cells. The sequence of events triggered by inhibition of ATP production included a rapid decline of ATP, depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and a slow calcium leak from the ER followed by formation of STIM1 puncta. STIM1 puncta induced by ATP depletion were co-localized with clusters of ORAI1 channels. STIM1–ORAI1 clusters that developed as a result of ATP depletion were very poor mediators of Ca2+ influx. Re-translocation of STIM1 from puncta back to the ER was observed during total ATP depletion. We can therefore conclude that STIM1 translocation and re-translocation as well as formation of STIM1–ORAI1 clusters occur in an ATP-independent fashion and under conditions of PI(4,5)P2 depletion.


Gut | 2017

Caffeine protects against experimental acute pancreatitis by inhibition of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release

Wei Huang; Matthew C Cane; Rajarshi Mukherjee; Peter Szatmary; Xiaoying Zhang; Victoria Elliott; Yulin Ouyang; Michael Chvanov; Diane Latawiec; Li Wen; David Booth; Andrea Haynes; Ole Holger Petersen; Alexei V. Tepikin; David N. Criddle; Robert Sutton

Objective Caffeine reduces toxic Ca2+ signals in pancreatic acinar cells via inhibition of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated signalling, but effects of other xanthines have not been evaluated, nor effects of xanthines on experimental acute pancreatitis (AP). We have determined effects of caffeine and its xanthine metabolites on pancreatic acinar IP3R-mediated Ca2+ signalling and experimental AP. Design Isolated pancreatic acinar cells were exposed to secretagogues, uncaged IP3 or toxins that induce AP and effects of xanthines, non-xanthine phosphodiesterase (PDE) inhibitors and cyclic adenosine monophosphate and cyclic guanosine monophosphate (cAMP/cGMP) determined. The intracellular cytosolic calcium concentration ([Ca2+]C), mitochondrial depolarisation and necrosis were assessed by confocal microscopy. Effects of xanthines were evaluated in caerulein-induced AP (CER-AP), taurolithocholic acid 3-sulfate-induced AP (TLCS-AP) or palmitoleic acid plus ethanol-induced AP (fatty acid ethyl ester AP (FAEE-AP)). Serum xanthines were measured by liquid chromatography-mass spectrometry. Results Caffeine, dimethylxanthines and non-xanthine PDE inhibitors blocked IP3-mediated Ca2+ oscillations, while monomethylxanthines had little effect. Caffeine and dimethylxanthines inhibited uncaged IP3-induced Ca2+ rises, toxin-induced Ca2+ release, mitochondrial depolarisation and necrotic cell death pathway activation; cAMP/cGMP did not inhibit toxin-induced Ca2+ rises. Caffeine significantly ameliorated CER-AP with most effect at 25 mg/kg (seven injections hourly); paraxanthine or theophylline did not. Caffeine at 25 mg/kg significantly ameliorated TLCS-AP and FAEE-AP. Mean total serum levels of dimethylxanthines and trimethylxanthines peaked at >2 mM with 25 mg/kg caffeine but at <100 µM with 25 mg/kg paraxanthine or theophylline. Conclusions Caffeine and its dimethylxanthine metabolites reduced pathological IP3R-mediated pancreatic acinar Ca2+ signals but only caffeine ameliorated experimental AP. Caffeine is a suitable starting point for medicinal chemistry.


Biochemical Journal | 2015

The role of Ca2+ influx in endocytic vacuole formation in pancreatic acinar cells.

Svetlana Voronina; David Collier; Michael Chvanov; Ben Middlehurst; Alison J. Beckett; Ian A. Prior; David N. Criddle; Malcolm Begg; Katsuhiko Mikoshiba; Robert Sutton; Alexei V. Tepikin

The inducers of acute pancreatitis trigger a prolonged increase in the cytosolic Ca2+ concentration ([Ca2+]c), which is responsible for the damage to and eventual death of pancreatic acinar cells. Vacuolization is an important indicator of pancreatic acinar cell damage. Furthermore, activation of trypsinogen occurs in the endocytic vacuoles; therefore the vacuoles can be considered as ‘initiating’ organelles in the development of the cell injury. In the present study, we investigated the relationship between the formation of endocytic vacuoles and Ca2+ influx developed in response to the inducers of acute pancreatitis [bile acid taurolithocholic acid 3-sulfate (TLC-S) and supramaximal concentration of cholecystokinin-8 (CCK)]. We found that the inhibitor of STIM (stromal interaction molecule)/Orai channels, GSK-7975A, effectively suppressed both the Ca2+ influx (stimulated by inducers of pancreatitis) and the formation of endocytic vacuoles. Cell death induced by TLC-S or CCK was also inhibited by GSK-7975A. We documented the formation of endocytic vacuoles in response to store-operated Ca2+ entry (SOCE) induced by thapsigargin [TG; inhibitor of sarcoplasmic/endoplasmic reticulum (ER) Ca2+ pumps] and observed strong inhibition of TG-induced vacuole formation by GSK-7975A. Finally, we found that structurally-unrelated inhibitors of calpain suppress formation of endocytic vacuoles, suggesting that this Ca2+-dependent protease is a mediator between Ca2+ elevation and endocytic vacuole formation.

Collaboration


Dive into the Michael Chvanov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Wen

Royal Liverpool University Hospital

View shared research outputs
Top Co-Authors

Avatar

Muhammad Awais

Royal Liverpool University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Huang

Royal Liverpool University Hospital

View shared research outputs
Top Co-Authors

Avatar

Diane Latawiec

Royal Liverpool University Hospital

View shared research outputs
Top Co-Authors

Avatar

Peter Szatmary

Royal Liverpool University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge