Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael D. Crisp is active.

Publication


Featured researches published by Michael D. Crisp.


Nature | 2009

Phylogenetic biome conservatism on a global scale

Michael D. Crisp; Mary T. K. Arroyo; Lyn G. Cook; Maria A. Gandolfo; Gregory J. Jordan; Matt S. McGlone; Peter H. Weston; Mark Westoby; Peter Wilf; H. Peter Linder

How and why organisms are distributed as they are has long intrigued evolutionary biologists. The tendency for species to retain their ancestral ecology has been demonstrated in distributions on local and regional scales, but the extent of ecological conservatism over tens of millions of years and across continents has not been assessed. Here we show that biome stasis at speciation has outweighed biome shifts by a ratio of more than 25:1, by inferring ancestral biomes for an ecologically diverse sample of more than 11,000 plant species from around the Southern Hemisphere. Stasis was also prevalent in transocean colonizations. Availability of a suitable biome could have substantially influenced which lineages establish on more than one landmass, in addition to the influence of the rarity of the dispersal events themselves. Conversely, the taxonomic composition of biomes has probably been strongly influenced by the rarity of species’ transitions between biomes. This study has implications for the future because if clades have inherently limited capacity to shift biomes, then their evolutionary potential could be strongly compromised by biome contraction as climate changes.


Molecular Ecology | 2009

Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history

Dan F. Rosauer; Shawn W. Laffan; Michael D. Crisp; Stephen C. Donnellan; Lynette Gai Cook

We present a new, broadly applicable measure of the spatial restriction of phylogenetic diversity, termed phylogenetic endemism (PE). PE combines the widely used phylogenetic diversity and weighted endemism measures to identify areas where substantial components of phylogenetic diversity are restricted. Such areas are likely to be of considerable importance for conservation. PE has a number of desirable properties not combined in previous approaches. It assesses endemism consistently, independent of taxonomic status or level, and independent of previously defined political or biological regions. The results can be directly compared between areas because they are based on equivalent spatial units. PE builds on previous phylogenetic analyses of endemism, but provides a more general solution for mapping endemism of lineages. We illustrate the broad applicability of PE using examples of Australian organisms having contrasting life histories: pea‐flowered shrubs of the genus Daviesia (Fabaceae) and the Australian species of the Australo‐Papuan tree frog radiation within the family Hylidae.


Proceedings of the Royal Society of London Series B: Biological Sciences | 2005

Not so ancient: the extant crown group of Nothofagus represents a post-Gondwanan radiation

Lyn G. Cook; Michael D. Crisp

This study uses a molecular-dating approach to test hypotheses about the biogeography of Nothofagus. The molecular modelling suggests that the present-day subgenera and species date from a radiation that most likely commenced between 55 and 40 Myr ago. This rules out the possibility of a reconciled all-vicariance hypothesis for the biogeography of extant Nothofagus. However, the molecular dates for divergences between Australasian and South American taxa are consistent with the rifting of Australia and South America from Antarctica. The molecular dates further suggest a dispersal of subgenera Lophozonia and Fuscospora between Australia and New Zealand after the onset of the Antarctic Circumpolar Current and west wind drift. It appears likely that the New Caledonian lineage of subgenus Brassospora diverged from the New Guinean lineage elsewhere, prior to colonizing New Caledonia. The molecular approach strongly supports fossil-based estimates that Nothofagus diverged from the rest of Fagales more than 84 Myr ago. However, the mid-Cenozoic estimate for the diversification of the four extant subgenera conflicts with the palynological interpretation because pollen fossils, attributed to all four extant subgenera, were widespread across the Weddellian province of Gondwana about 71 Myr ago. The discrepancy between the pollen and molecular dates exists even when confidence intervals from several sources of error are taken into account. In contrast, the molecular age estimates are consistent with macrofossil dates. The incongruence between pollen fossils and molecular dates could be resolved if the early pollen types represent extinct lineages, with similar types later evolving independently in the extant lineages.


Nature Communications | 2011

Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary

Michael D. Crisp; Geoffrey E. Burrows; Lynette Gai Cook; Andrew H. Thornhill; David M. J. S. Bowman

Fire is a major modifier of communities, but the evolutionary origins of its prevalent role in shaping current biomes are uncertain. Australia is among the most fire-prone continents, with most of the landmass occupied by the fire-dependent sclerophyll and savanna biomes. In contrast to biomes with similar climates in other continents, Australia has a tree flora dominated by a single genus, Eucalyptus, and related Myrtaceae. A unique mechanism in Myrtaceae for enduring and recovering from fire damage likely resulted in this dominance. Here, we find a conserved phylogenetic relationship between post-fire resprouting (epicormic) anatomy and biome evolution, dating from 60 to 62 Ma, in the earliest Palaeogene. Thus, fire-dependent communities likely existed 50 million years earlier than previously thought. We predict that epicormic resprouting could make eucalypt forests and woodlands an excellent long-term carbon bank for reducing atmospheric CO(2) compared with biomes with similar fire regimes in other continents.


Evolution | 2009

EXPLOSIVE RADIATION OR CRYPTIC MASS EXTINCTION? INTERPRETING SIGNATURES IN MOLECULAR PHYLOGENIES

Michael D. Crisp; Lynette Gai Cook

How biodiversity is generated and maintained underlies many major questions in evolutionary biology, particularly relating to the tempo and pattern of diversification through time. Molecular phytogenies and new analytical methods provide additional tools to help interpret evolutionary processes. Evolutionary rates in lineages sometimes appear punctuated, and such “explosive” radiations are commonly interpreted as adaptive, leading to causative key innovations being sought. Here we argue that an alternative process might explain apparently rapid radiations (“broom-and-handle” or “stemmy” patterns seen in many phytogenies) with no need to invoke dramatic increase in the rate of diversification. We use simulations to show that mass extinction events can produce the same phylogenetic pattern as that currently being interpreted as due to an adaptive radiation. By comparing simulated and empirical phytogenies of Australian and southern African legumes, we find evidence for coincident mass extinctions in multiple lineages that could have resulted from global climate change at the end of the Eocene.


New Phytologist | 2012

Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes?

Michael D. Crisp; Lynette Gai Cook

Phylogenetic niche conservatism (PNC) is the tendency of lineages to retain their niche-related traits through speciation events. A recent surge in the availability of well-sampled molecular phylogenies has stimulated phylogenetic approaches to understanding ecological processes at large geographical scales and through macroevolutionary time. We stress that PNC is a pattern, not a process, and is found only in some traits and some lineages. At the simplest level, a pattern of PNC is an inevitable consequence of evolution - descent with modification and divergence of lineages - but several intrinsic causes, including physicochemical, developmental and genetic constraints, can lead directly to a marked pattern of PNC. A pattern of PNC can also be caused indirectly, as a by-product of other causes, such as extinction, dispersal limitation, competition and predation. Recognition of patterns of PNC can contribute to understanding macroevolutionary processes: for example, release from constraint in traits has been hypothesized to trigger adaptive radiations such as that of the angiosperms. Given the multiple causes of patterns of PNC, tests should address explicit questions about hypothesized processes. We conclude that PNC is a scientifically useful concept with applications to the practice of ecological research.


Cladistics | 1995

NOTHOFAGUS AND PACIFIC BIOGEOGRAPHY

H. Peter Linder; Michael D. Crisp

Abstract — Gondwanan biogeography, particularly the relationships between southern South America, New Zealand, Australia, New Guinea and New Caledonia, has been much studied. Nothofagus is often used as the “test taxon”, and many papers have been directed at using Nothofagus to explain Gondwanan biogeography. Cladistic biogeographers, working on plant material, have generally failed to find congruence among taxa expected from the southern Pacific disjunctions. New morphological and molecular data on the phytogeny of Nothofagus have re‐opened the issue, and we analysed these data to construct a new hypothesis of the biogeography of the genus. We assembled all plant taxa for which we could find reasonably robust phylogenetic hypotheses, and sought a parsimonious biogeographical pattern common to all. Two analyses, based on different assumptions, produced the same general areacladogram. We use the general area‐cladogram, in conjunction with the fossil record of Nothofagus to construct a historical scenario for the evolution of the genus. This scenario indicates extensive extinction, but also suggests that Australia has a more recent relationship to New Zealand than to southern South America. This is not congruent with the current geological theories, nor with the patterns evident from insect biogeography. We suggest that concordant dispersal is an unlikely explanation for this pattern, and propose that the solution might be found in alternative geological hypotheses.


Plant Ecology | 1979

Structure, pattern, and diversity of a mallee community in New South Wales

R. H. Whittaker; William A. Niering; Michael D. Crisp

An intensive sample of Australian mallee included a strip of 100 1 sq. m plots and counts of species numbers in expanding areas (1, 10, 100, and 1000 sq. m) to a full hectare. Reciprocal averaging (RA) produced an effective arrangement of the sq. m plots and their species along an axis of internal pattern from mallee patches to the openings between them. RA scores permitted definition of the patches and transitions and comparisons of relative difference between successive sq. m plots (mean RA score differences of 6.9 in the openings, 11.9 in mallee patches, and 14.7 in transitions). Pattern diversity, measured as degree of species turnover along the first RA axis, was 2.3 half-changes. Groups of species most characteristic of openings, transitions, and mallee patches could be recognized; but many species are of wide amplitude along the pattern axis, and neither RA nor association measurements showed distinct species groups separate from one another. The mallee sample is rich in species (mean of 53/0.1 ha, total of 101/ha) compared with North American samples; it is roughly similar to North American woodlands and shrublands in life-form spectrum but different in growth-form representation. Mean heights of species formed an apparent lognormal distribution with the concentration of species in the 0.2–0.4 m oetave. Species numbers in relation to areas (A, in sq. m), traced from 1 sq. mm to 105 sq. m, were reasonably fitted by either S=5.33 + 15.28 log A or S=8.22A 0.29 at intermediate quadrat sizes (1–1000 sq. m) but not at smaller sizes. The ten replicate 0.1 ha samples gave coefficients of variation of 7% for species numbers and 9–10% for the regression coefficients (except b=5.33 with a CV of 43%).


Taxon | 2017

A new subfamily classification of the leguminosae based on a taxonomically comprehensive phylogeny

Nasim Azani; Marielle Babineau; C. Donovan Bailey; Hannah Banks; ArianeR. Barbosa; Rafael Barbosa Pinto; JamesS. Boatwright; LeonardoM. Borges; Gillian K. Brown; Anne Bruneau; Elisa Candido; Domingos Cardoso; Kuo-Fang Chung; RuthP. Clark; Adilva deS. Conceição; Michael D. Crisp; Paloma Cubas; Alfonso Delgado-Salinas; KyleG. Dexter; JeffJ. Doyle; Jérôme Duminil; AshleyN. Egan; Manuel de la Estrella; MarcusJ. Falcão; DmitryA. Filatov; Ana Paula Fortuna-Perez; RenéeH. Fortunato; Edeline Gagnon; Peter Gasson; Juliana Gastaldello Rando

The classification of the legume family proposed here addresses the long-known non-monophyly of the traditionally recognised subfamily Caesalpinioideae, by recognising six robustly supported monophyletic subfamilies. This new classification uses as its framework the most comprehensive phylogenetic analyses of legumes to date, based on plastid matK gene sequences, and including near-complete sampling of genera (698 of the currently recognised 765 genera) and ca. 20% (3696) of known species. The matK gene region has been the most widely sequenced across the legumes, and in most legume lineages, this gene region is sufficiently variable to yield well-supported clades. This analysis resolves the same major clades as in other phylogenies of whole plastid and nuclear gene sets (with much sparser taxon sampling). Our analysis improves upon previous studies that have used large phylogenies of the Leguminosae for addressing evolutionary questions, because it maximises generic sampling and provides a phylogenetic tree that is based on a fully curated set of sequences that are vouchered and taxonomically validated. The phylogenetic trees obtained and the underlying data are available to browse and download, facilitating subsequent analyses that require evolutionary trees. Here we propose a new community-endorsed classification of the family that reflects the phylogenetic structure that is consistently resolved and recognises six subfamilies in Leguminosae: a recircumscribed Caesalpinioideae DC., Cercidoideae Legume Phylogeny Working Group (stat. nov.), Detarioideae Burmeist., Dialioideae Legume Phylogeny Working Group (stat. nov.), Duparquetioideae Legume Phylogeny Working Group (stat. nov.), and Papilionoideae DC. The traditionally recognised subfamily Mimosoideae is a distinct clade nested within the recircumscribed Caesalpinioideae and is referred to informally as the mimosoid clade pending a forthcoming formal tribal and/or cladebased classification of the new Caesalpinioideae. We provide a key for subfamily identification, descriptions with diagnostic charactertistics for the subfamilies, figures illustrating their floral and fruit diversity, and lists of genera by subfamily. This new classification of Leguminosae represents a consensus view of the international legume systematics community; it invokes both compromise and practicality of use.


Annals of Botany | 2010

Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae

Ed Biffin; Eve Lucas; Lyn A. Craven; Itayguara Ribeiro da Costa; Mark G. Harrington; Michael D. Crisp

BACKGROUND AND AIMS The angiosperm family Myrtaceae comprises 17 tribes with more than half of the estimated 5500 species being referred to the fleshy-fruited and predominantly rainforest associated Syzygieae and Myrteae. Previous studies suggest that fleshy fruits have evolved separately in these lineages, whereas generally shifts in fruit morphology have been variously implicated in diversification rate shifts among angiosperms. A phylogenetic hypothesis and estimate divergence times for Myrtaceae is developed as a basis to explore the evidence for, and drivers of, elevated diversification rates among the fleshy-fruited tribes of Myrtaceae. METHODS Bayesian phylogenetic analyses of plastid and nuclear DNA sequences were used to estimate intertribal relationships and lineage divergence times in Myrtaceae. Focusing on the fleshy-fruited tribes, a variety of statistical approaches were used to assess diversification rates and diversification rate shifts across the family. KEY RESULTS Analyses of the sequence data provide a strongly supported phylogenetic hypothesis for Myrtaceae. Relative to previous studies, substantially younger ages for many of the clades are reported, and it is argued that the use of flexible calibrations to incorporate fossil data provides more realistic divergence estimates than the use of errorless point calibrations. It is found that Syzygieae and Myrteae have experienced elevated diversification rates relative to other lineages of Myrtaceae. Positive shifts in diversification rate have occurred separately in each lineage, associated with a shift from dry to fleshy fruit. CONCLUSIONS Fleshy fruits have evolved independently in Syzygieae and Myrteae, and this is accompanied by exceptional diversification rate shifts in both instances, suggesting that the evolution of fleshy fruits is a key innovation for rainforest Myrtaceae. Noting the scale dependency of this hypothesis, more complex explanations may be required to explain diversification rate shifts occurring within the fleshy-fruited tribes, and the suggested phylogenetic hypothesis provides an appropriate framework for this undertaking.

Collaboration


Dive into the Michael D. Crisp's collaboration.

Top Co-Authors

Avatar

Lyn G. Cook

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lyn A. Craven

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lindy Cayzer

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory T. Chandler

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge