Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael D. Griswold is active.

Publication


Featured researches published by Michael D. Griswold.


Nature Genetics | 2004

Plzf is required in adult male germ cells for stem cell self-renewal.

F. William Buaas; Andrew L. Kirsh; Manju Sharma; Derek J. McLean; Jamie L Morris; Michael D. Griswold; Dirk G. de Rooij; Robert E. Braun

Adult germline stem cells are capable of self-renewal, tissue regeneration and production of large numbers of differentiated progeny. We show here that the classical mouse mutant luxoid affects adult germline stem cell self-renewal. Young homozygous luxoid mutant mice produce limited numbers of normal spermatozoa and then progressively lose their germ line after birth. Transplantation studies showed that germ cells from mutant mice did not colonize recipient testes, suggesting that the defect is intrinsic to the stem cells. We determined that the luxoid mutant contains a nonsense mutation in the gene encoding Plzf, a transcriptional repressor that regulates the epigenetic state of undifferentiated cells, and showed that Plzf is coexpressed with Oct4 in undifferentiated spermatogonia. This is the first gene shown to be required in germ cells for stem cell self-renewal in mammals.


Biology of Reproduction | 2004

The Murine Testicular Transcriptome: Characterizing Gene Expression in the Testis During the Progression of Spermatogenesis

James E. Shima; Derek J. McLean; John R. McCarrey; Michael D. Griswold

Abstract One of the most promising applications of microarrays is the study of changes in gene expression associated with the growth and development of mammalian tissues. The testis provides an excellent model to determine the ability of microarrays to effectively characterize the changes in gene expression as an organ develops from birth to adulthood. To this end, a developmental testis gene expression time course profiling the expression patterns of ∼36 000 transcripts on the Affymetrix MGU74v2 GeneChip platform at 11 distinct time points was created to gain a greater understanding of the molecular changes necessary for and elicited by the development of the testis. Additionally, gene expression profiles of isolated testicular cell types were created that can aid in the further characterization of the specific functional actions of each cell type in the testis. Statistical analysis of the data revealed 11 252 transcripts (9846 unique) expressed differentially in a significant manner. Subsequent cluster analysis produced five distinct expressional patterns within the time course. These patterns of expression are present at distinct chronological periods during testis development and often share similarities with cell-specific expression profiles. Analysis of cell-specific expression patterns produced unique and characteristic groups of transcripts that provide greater insight into the activities, biological and chronological, of testicular cell types during the progression of spermatogenesis. Further analysis of this time course can provide a distinct and more definitive view into the genes implicated, known and unknown, in the maturation, maintenance, and function of the testis and the integrated process of spermatogenesis.


Nature | 2011

DMRT1 prevents female reprogramming in the postnatal mammalian testis

Clinton K. Matson; Mark W. Murphy; Aaron L. Sarver; Michael D. Griswold; Vivian J. Bardwell; David Zarkower

Sex in mammals is determined in the fetal gonad by the presence or absence of the Y chromosome gene Sry, which controls whether bipotential precursor cells differentiate into testicular Sertoli cells or ovarian granulosa cells. This pivotal decision in a single gonadal cell type ultimately controls sexual differentiation throughout the body. Sex determination can be viewed as a battle for primacy in the fetal gonad between a male regulatory gene network in which Sry activates Sox9 and a female network involving WNT/β-catenin signalling. In females the primary sex-determining decision is not final: loss of the FOXL2 transcription factor in adult granulosa cells can reprogram granulosa cells into Sertoli cells. Here we show that sexual fate is also surprisingly labile in the testis: loss of the DMRT1 transcription factor in mouse Sertoli cells, even in adults, activates Foxl2 and reprograms Sertoli cells into granulosa cells. In this environment, theca cells form, oestrogen is produced and germ cells appear feminized. Thus Dmrt1 is essential to maintain mammalian testis determination, and competing regulatory networks maintain gonadal sex long after the fetal choice between male and female. Dmrt1 and Foxl2 are conserved throughout vertebrates and Dmrt1-related sexual regulators are conserved throughout metazoans. Antagonism between Dmrt1 and Foxl2 for control of gonadal sex may therefore extend beyond mammals. Reprogramming due to loss of Dmrt1 also may help explain the aetiology of human syndromes linked to DMRT1, including disorders of sexual differentiation and testicular cancer.Sex in mammals is determined in the fetal gonad by the presence or absence of the Y chromosome gene Sry, which controls whether bipotential precursor cells differentiate into testicular Sertoli cells or ovarian granulosa cells. This pivotal decision in a single gonadal cell type ultimately controls sexual differentiation throughout the body. Sex determination can be viewed as a battle for primacy in the fetal gonad between a male regulatory gene network in which Sry activates Sox9 and a female network involving WNT/β-catenin signalling. In females the primary sex-determining decision is not final: loss of the FOXL2 transcription factor in adult granulosa cells can reprogram granulosa cells into Sertoli cells. Here we show that sexual fate is also surprisingly labile in the testis: loss of the DMRT1 transcription factor in mouse Sertoli cells, even in adults, activates Foxl2 and reprograms Sertoli cells into granulosa cells. In this environment, theca cells form, oestrogen is produced and germ cells appear feminized. Thus Dmrt1 is essential to maintain mammalian testis determination, and competing regulatory networks maintain gonadal sex long after the fetal choice between male and female. Dmrt1 and Foxl2 are conserved throughout vertebrates and Dmrt1-related sexual regulators are conserved throughout metazoans. Antagonism between Dmrt1 and Foxl2 for control of gonadal sex may therefore extend beyond mammals. Reprogramming due to loss of Dmrt1 also may help explain the aetiology of human syndromes linked to DMRT1, including disorders of sexual differentiation and testicular cancer.


Current Biology | 2006

Postmeiotic Sex Chromatin in the Male Germline of Mice

Satoshi H. Namekawa; Peter J. Park; Li-Feng Zhang; James E. Shima; John R. McCarrey; Michael D. Griswold; Jeannie T. Lee

In mammals, the X and Y chromosomes are subject to meiotic sex chromosome inactivation (MSCI) during prophase I in the male germline, but their status thereafter is currently unclear. An abundance of X-linked spermatogenesis genes has spawned the view that the X must be active . On the other hand, the idea that the imprinted paternal X of the early embryo may be preinactivated by MSCI suggests that silencing may persist longer . To clarify this issue, we establish a comprehensive X-expression profile during mouse spermatogenesis. Here, we discover that the X and Y occupy a novel compartment in the postmeiotic spermatid and adopt a non-Rabl configuration. We demonstrate that this postmeiotic sex chromatin (PMSC) persists throughout spermiogenesis into mature sperm and exhibits epigenetic similarity to the XY body. In the spermatid, 87% of X-linked genes remain suppressed postmeiotically, while autosomes are largely active. We conclude that chromosome-wide X silencing continues from meiosis to the end of spermiogenesis, and we discuss implications for proposed mechanisms of imprinted X-inactivation.


Biology of Reproduction | 2005

Profiling Gene Expression During the Differentiation and Development of the Murine Embryonic Gonad

Christopher Small; James E. Shima; Mehmet Uzumcu; Michael K. Skinner; Michael D. Griswold

Abstract The application of microarray technology to the study of mammalian organogenesis can provide greater insights into the steps necessary to elicit a functionally competent tissue. To this end, a temporal profile of gene expression was generated with the purpose of identifying changes in gene expression occurring within the developing male and female embryonic gonad. Gonad tissue was collected from mouse embryos at 11.5, 12.5, 14.5, 16.5, and 18.5 days postcoitum (dpc) and relative steady-state levels of mRNA were determined using the Affymetrix MGU74v2 microarray platform. Statistical analysis produced 3693 transcripts exhibiting differential expression during male and/or female gonad development. At 11.5 dpc, the gonad is morphologically indifferent, but at 12.5 dpc, transitions to a male or female phenotype are discernible by the appearance of testicular cords. A number of genes are expressed during this period and many share similar expression profiles in both sexes. As expected, the expression of two well-known sex determination genes, specifically Sry and Sox9, is unique to the testis. Beyond 12.5 dpc, differential gene expression becomes increasingly evident as the male and female tissue morphologically and physiologically diverges. This is evident by two unique waves of transcriptional activity occurring after 14.5 dpc in the male and female. With this study, a large number of transcripts comprising the murine transcriptome can be examined throughout male and female embryonic gonad development and allow for a more complete description of gonad differentiation and development.


Biology of Reproduction | 2008

Expression of Stimulated by Retinoic Acid Gene 8 (Stra8) and Maturation of Murine Gonocytes and Spermatogonia Induced by Retinoic Acid In Vitro

Qing Zhou; Ying Li; Rong Nie; Patrick J. Friel; Debra Mitchell; Ryan Evanoff; Derek J. Pouchnik; Brent Banasik; John R. McCarrey; Christopher Small; Michael D. Griswold

Abstract Vitamin A deficiency in the mouse results in an arrest in the progression of undifferentiated spermatogonia to differentiating spermatogonia. The supplement of retinol to vitamin-A-deficient mice reinitiates spermatogenesis in a synchronous manner throughout the testes. It is unclear whether the effects of retinoids are the result of a direct action on germ cells or are indirectly mediated through Sertoli cells. The expression of Stimulated by retinoic acid gene 8 (Stra8), which is required for spermatogenesis, is directly related to the availability of retinoic acid (RA). Analysis of gene expression by microarrays revealed moderate levels of Stra8 transcript in gonocytes and high levels in A and B spermatogonia. Stra8 mRNA levels were greatly reduced or absent in germ cells once they entered meiosis. This study examined the effect of retinoic acid on cultured neonatal testes and isolated gonocytes/spermatogonia in vitro. THY1+ and KIT+ germ cells were isolated by magnetic-activated cell sorting from the testes of mice of different ages. Isolated germ cells were cultured and treated with either vehicle (ethanol) or RA without feeder cells. We found that 1) Stra8 is predominantly expressed in premeiotic germ cells, 2) RA stimulates gonocyte DNA replication and differentiation in cultured neonatal testes, 3) in the absence of feeder cells, RA directly induces the transition of undifferentiated spermatogonia to differentiating spermatogonia by stimulating Stra8 and Kit gene expression, 4) RA dramatically stimulates Stra8 expression in undifferentiated spermatogonia but has a lesser impact in differentiating spermatogonia, 5) endogenous Stra8 gene expression is higher in differentiating spermatogonia than in undifferentiated spermatogonia and could mediate the RA effects on spermatogonial maturation, and 6) RA stimulates a group of genes involved in the metabolism, storage, transport, and signaling of retinoids.


Developmental Cell | 2010

The Mammalian Doublesex Homolog DMRT1 Is a Transcriptional Gatekeeper that Controls the Mitosis versus Meiosis Decision in Male Germ Cells

Clinton K. Matson; Mark W. Murphy; Michael D. Griswold; Shosei Yoshida; Vivian J. Bardwell; David Zarkower

The switch from mitosis to meiosis is a unique feature of germ cell development. In mammals, meiotic initiation requires retinoic acid (RA), which activates meiotic inducers, including Stra8, but how the switch to meiosis is controlled in male germ cells (spermatogonia) remains poorly understood. Here we examine the role of the Doublesex-related transcription factor DMRT1 in adult spermatogenesis using conditional gene targeting in the mouse. Loss of Dmrt1 causes spermatogonia to precociously exit the spermatogonial program and enter meiosis. Therefore, DMRT1 determines whether male germ cells undergo mitosis and spermatogonial differentiation or meiosis. Loss of Dmrt1 in spermatogonia also disrupts cyclical gene expression in Sertoli cells. DMRT1 acts in spermatogonia to restrict RA responsiveness, directly repress Stra8 transcription, and activate transcription of the spermatogonial differentiation factor Sohlh1, thereby preventing meiosis and promoting spermatogonial development. By coordinating spermatogonial development and mitotic amplification with meiosis, DMRT1 allows abundant, continuous production of sperm.


Biology of Reproduction | 2008

Expression of Stimulated by Retinoic Acid Gene 8 (Stra8) in Spermatogenic Cells Induced by Retinoic Acid: An In Vivo Study in Vitamin A-Sufficient Postnatal Murine Testes

Qing Zhou; Rong Nie; Ying Li; Patrick J. Friel; Debra Mitchell; Rex A. Hess; Christopher Small; Michael D. Griswold

Abstract Vitamin A is required for male fertility and normal spermatogenesis. Retinoic acid (RA), an active metabolite of vitamin A, is necessary for spermatogonial maturation and proper entry of germ cells into meiotic prophase in the postnatal testes. The expression of Stra8, which is essential for successful meiosis in both male and female gonads and normal spermatogenesis, is directly related to the availability of RA. This study examined the developmental expression pattern of Stra8 transcript in both male and female gonads, provided specific cellular localization of STRA8 protein in the postnatal and adult testis, and investigated RA actions in adult germ cells in a vitamin A-sufficient condition. The peak of Stra8 mRNA expression coincided with the onset of meiosis in postnatal testes. STRA8 protein was detected in gonocytes as early as 5 days postpartum. The expression of STRA8 protein in the neonatal testes was not uniform among spermatogonia, perhaps heralding the asynchronous beginning of spermatogenesis. In adult testes, the highest level of Stra8 mRNA and protein was found in seminiferous epithelial stages VI–VIII. STRA8 protein was localized to some type A and B spermatogonia, preleptotene spermatocytes, and early leptotene spermatocytes. In the vitamin A-sufficient adult testes, RA but not retinol acetate stimulated Stra8 mRNA expression. STRA8 protein expression in adult spermatogonia was induced by RA stimulation, suggesting its role in spermatogonial differentiation. Retinoic acid also increased the number of preleptotene spermatocytes exhibiting 5-bromo-2-deoxyuridine incorporation, indicating a more synchronized premeiotic DNA replication.


Journal of Clinical Investigation | 2010

The key role of vitamin A in spermatogenesis

Cathryn A. Hogarth; Michael D. Griswold

Spermatogenesis in adult mammals is highly organized, with the goal being continual sperm production. Vertebrate testes are arranged into recurring cellular associations that vary with time and distance along the tubule. These changes over time and distance are designated the cycle of the seminiferous epithelium and the spermatogenic wave, respectively. In this Review, we briefly outline the roles that follicle-stimulating hormone (FSH) and testosterone play in regulating spermatogenesis and describe our current understanding of how vitamin A regulates germ cell differentiation and how it may lead to the generation of both the cycle of the seminiferous epithelium and the spermatogenic wave.


Journal of Biological Chemistry | 1996

Role of E Box and Initiator Region in the Expression of the Rat Follicle-stimulating Hormone Receptor

Tamara L. Goetz; Tracy L. Lloyd; Michael D. Griswold

The promoter for the rat follicle-stimulating hormone receptor (FSHR) gene contains a conserved consensus E box sequence and an initiator-like region (InR) sequence. Deletion analysis and transient transfections showed that a 114-base pair region (−143 to −30) that encompasses the E box and the InR was sufficient for greater than 75% of promoter function. DNase I footprint analysis showed that the E box and InR were protected by nuclear proteins from rat Sertoli cells, and the E box region was shown by electrophoretic mobility shift assays (EMSA) to be a site of Sertoli protein interactions. Mutations in the E box disrupted these interactions and reduced FSHR promoter activity. Co-transfection of the inhibitor of DNA binding (Id) with an FSHR/luciferase construct into mouse Sertoli 1 cells reduced FSHR promoter activity. Using EMSA, the upstream stimulatory factor was shown to be a component of the complexes that interacted with the E box in the FSHR promoter. Binding of proteins from rat Sertoli cells to the InR was demonstrated using EMSA. Also, an oligonucleotide that represented the sequence of the terminal deoxynucleotidyltransferase InR displaced the complexes at the FSHR InR. Mutations in the InR resulted in a significant reduction of FSHR promoter activity.

Collaboration


Dive into the Michael D. Griswold's collaboration.

Top Co-Authors

Avatar

Cathryn A. Hogarth

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Christopher Small

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Debra Mitchell

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Ryan Evanoff

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Derek J. McLean

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Small

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Travis Kent

Washington State University

View shared research outputs
Top Co-Authors

Avatar

James E. Shima

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Leslie L. Heckert

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge