Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael D. Guiver is active.

Publication


Featured researches published by Michael D. Guiver.


Nature Materials | 2011

Polymer nanosieve membranes for CO2-capture applications

Naiying Du; Ho Bum Park; Gilles P. Robertson; Mauro M. Dal-Cin; Tymen Visser; Ludmila Scoles; Michael D. Guiver

Microporous organic polymers (MOPs) are of potential significance for gas storage, gas separation and low-dielectric applications. Among many approaches for obtaining such materials, solution-processable MOPs derived from rigid and contorted macromolecular structures are promising because of their excellent mass transport and mass exchange capability. Here we show a class of amorphous MOP, prepared by [2+3] cycloaddition modification of a polymer containing an aromatic nitrile group with an azide compound, showing super-permeable characteristics and outstanding CO(2) separation performance, even under polymer plasticization conditions such as CO(2)/light gas mixtures. This unprecedented result arises from the introduction of tetrazole groups into highly microporous polymeric frameworks, leading to more favourable CO(2) sorption with superior affinity in gas mixtures, and selective CO(2) transport by presorbed CO(2) molecules that limit access by other light gas molecules. This strategy provides a direction in the design of MOP membrane materials for economic CO(2) capture processes.


Energy and Environmental Science | 2012

Advances in high permeability polymeric membrane materials for CO2 separations

Naiying Du; Ho Bum Park; Mauro M. Dal-Cin; Michael D. Guiver

Global CO2 emissions have increased steadily in tandem with the use of fossil fuels. A paradigm shift is needed in developing new ways by which energy is supplied and utilized, together with the mitigation of climate change through CO2 reduction technologies. There is an almost universal acceptance of the link between rising anthropogenic CO2 levels due to fossil fuel combustion and global warming accompanied by unpredictable climate change. Therefore, renewable energy, non-fossil fuels and CO2 capture and storage (CCS) must be deployed on a massive scale. CCS technologies provide a means for reducing greenhouse gas emissions, in addition to the current strategies of improving energy efficiency. Coal-fired power plants are among the main large-scale CO2 emitters, and capture of the CO2 emissions can be achieved with conventional technologies such as amine absorption. However, this energy-consuming process, calculated at approximately 30% of the power plant capacity, would result in unacceptable increases in power generation costs. Membrane processes offer a potentially viable energy-saving alternative for CO2 capture because they do not involve any phase transformation. However, typical gas separation membranes that are currently available have insufficiently high permeability to be able to process the massive volumes of flue gas, which would result in a high CO2 capture. Polymer membranes highly permeable to CO2 and having good selectivity should be developed for the membrane process to be viable. This perspective review summarizes recent noteworthy advances in polymeric materials having very high CO2 permeability and good CO2/N2 selectivity that largely surpass the separation performance of conventional polymer materials. Five important classes of polymer membrane materials are highlighted: polyimides, thermally rearranged polymers (TRs), substituted polyacetylenes, polymers with intrinsic microporosity (PIM) and polyethers, which provide insights into polymer designs suitable for CO2 separation from, for example, the post-combustion flue gases in coal-fired power plants.


Catalysis Today | 2003

Properties of SPEEK based PEMs for fuel cell application

Serguei D. Mikhailenko; Keping Wang; Peixiang Xing; Gilles P. Robertson; Michael D. Guiver

Comparative studies of membranes prepared using different solvents, have shown that the casting solvent plays a significant role, affecting their proton conductivity and mechanical strength. It has been found that using DMF strongly decreases the membrane conductivity in comparison with other solvents studied. The 1 H NMR results yield an insight into the mechanism of this effect, evidencing the formation of the strong hydrogen bonding of sulfonic acid groups with DMF. This can explain the large discordances of more than an order of magnitude existing between the conductivity results for sulfonated polyetheretherketone (PEEK) in some previous studies and in this work. It is also found that residual sulphuric acid, which is very difficult to eliminate from highly sulfonated polyetheretherketone (SPEEK), also affects its conductivity and under high temperature treatment, enters into reaction with both DMF and N,N-dimethylacetamide (DMAc), causing their degradation. As discussed in the present contribution, the conductivity measurement technique may also be a reason for discrepancy in the reported conductivity characteristics of SPEEK.


Energy and Environmental Science | 2016

Advances in high permeability polymer-based membrane materials for CO2 separations

Shaofei Wang; Xueqin Li; Hong Wu; Zhizhang Tian; Qingping Xin; Guangwei He; Dongdong Peng; Silu Chen; Yan Yin; Zhongyi Jiang; Michael D. Guiver

Membrane processes have evolved as a competitive approach in CO2 separations compared with absorption and adsorption processes, due to their inherent attributes such as energy-saving and continuous operation. High permeability membrane materials are crucial to efficient membrane processes. Among existing membrane materials for CO2 separations, polymer-based materials have some intrinsic advantages such as good processability, low price and a readily available variety of materials. In recent years, enormous research effort has been devoted to the use of membrane technology for CO2 separations from diverse sources such as flue gas (mainly N2), natural gas (mainly CH4) and syngas (mainly H2). Polymer-based membrane materials occupy the vast majority of all the membrane materials. For large-scale CO2 separations, polymer-based membrane materials with high CO2 permeability and good CO2/gas selectivity are required. In 2012, we published a Perspective review in Energy & Environmental Science on high permeability polymeric membrane materials for CO2 separations. Since then, more rapid progress has been made and the research focus has changed significantly. This review summarises the advances since 2012 on high permeability polymer-based membrane materials for CO2 separations. The major features of this review are reflected in the following three aspects: (1) we cover polymer-based membrane materials instead of purely polymeric membrane materials, which encompass both polymeric membranes and polymer–inorganic hybrid membranes. (2) CO2 facilitated transport membrane materials are presented. (3) Biomimetism and bioinspired membrane concepts are incorporated. A number of representative examples of recent advances in high permeability polymer-based membrane materials is highlighted with some critical analysis, followed by a brief perspective on future research and development directions.


Angewandte Chemie | 2011

Enhancement of proton transport by nanochannels in comb-shaped copoly(arylene ether sulfone)s.

Nanwen Li; Chenyi Wang; So Young Lee; Chi Hoon Park; Young Moo Lee; Michael D. Guiver

We gratefully acknowledge support of this research by the WCU(World Class University) program, National Research Foundation(NRF) of the Korean Ministry of Science and Technology (no. R31-2008-000-10092-0). NRCC publication 52850.


Advanced Materials | 2015

Nanostructured Ion‐Exchange Membranes for Fuel Cells: Recent Advances and Perspectives

Guangwei He; Zhen Li; Jing Zhao; Shaofei Wang; Hong Wu; Michael D. Guiver; Zhongyi Jiang

Polymer-based materials with tunable nanoscale structures and associated microenvironments hold great promise as next-generation ion-exchange membranes (IEMs) for acid or alkaline fuel cells. Understanding the relationships between nanostructure, physical and chemical microenvironment, and ion-transport properties are critical to the rational design and development of IEMs. These matters are addressed here by discussing representative and important advances since 2011, with particular emphasis on aromatic-polymer-based nanostructured IEMs, which are broadly divided into nanostructured polymer membranes and nanostructured polymer-filler composite membranes. For each category of membrane, the core factors that influence the physical and chemical microenvironments of the ion nanochannels are summarized. In addition, a brief perspective on the possible future directions of nanostructured IEMs is presented.


Nature | 2016

Nanocrack-regulated self-humidifying membranes

Chi Hoon Park; So Young Lee; Doo Sung Hwang; Dong Won Shin; Doo Hee Cho; Kang Hyuck Lee; Tae-Woo Kim; Tae-Wuk Kim; Mokwon Lee; Deok-Soo Kim; Cara M. Doherty; Aaron W. Thornton; Anita J. Hill; Michael D. Guiver; Young Moo Lee

The regulation of water content in polymeric membranes is important in a number of applications, such as reverse electrodialysis and proton-exchange fuel-cell membranes. External thermal and water management systems add both mass and size to systems, and so intrinsic mechanisms of retaining water and maintaining ionic transport in such membranes are particularly important for applications where small system size is important. For example, in proton-exchange membrane fuel cells, where water retention in the membrane is crucial for efficient transport of hydrated ions, by operating the cells at higher temperatures without external humidification, the membrane is self-humidified with water generated by electrochemical reactions. Here we report an alternative solution that does not rely on external regulation of water supply or high temperatures. Water content in hydrocarbon polymer membranes is regulated through nanometre-scale cracks (‘nanocracks’) in a hydrophobic surface coating. These cracks work as nanoscale valves to retard water desorption and to maintain ion conductivity in the membrane on dehumidification. Hydrocarbon fuel-cell membranes with surface nanocrack coatings operated at intermediate temperatures show improved electrochemical performance, and coated reverse-electrodialysis membranes show enhanced ionic selectivity with low bulk resistance.


Chemical Reviews | 2017

Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability

Dong Won Shin; Michael D. Guiver; Young Moo Lee

A fundamental understanding of polymer microstructure is important in order to design novel polymer electrolyte membranes (PEMs) with excellent electrochemical performance and stabilities. Hydrocarbon-based polymers have distinct microstructure according to their chemical structure. The ionic clusters and/or channels play a critical role in PEMs, affecting ion conductivity and water transport, especially at medium temperature and low relative humidity (RH). In addition, physical properties such as water uptake and dimensional swelling behavior depend strongly on polymer morphology. Over the past few decades, much research has focused on the synthetic development and microstructural characterization of hydrocarbon-based PEM materials. Furthermore, blends, composites, pressing, shear field, electrical field, surface modification, and cross-linking have also been shown to be effective approaches to obtain/maintain well-defined PEM microstructure. This review summarizes recent work on developments in advanced PEMs with various chemical structures and architecture and the resulting polymer microstructures and morphologies that arise for potential application in fuel cell, lithium ion battery, redox flow battery, actuators, and electrodialysis.


Macromolecular Rapid Communications | 2011

Azide-based Cross-Linking of Polymers of Intrinsic Microporosity (PIMs) for Condensable Gas Separation†

Naiying Du; Mauro M. Dal Cin; Ingo Pinnau; Andrzej Nicalek; Gilles P. Robertson; Michael D. Guiver

Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O(2) /N(2) and CO(2) /N(2) gas pairs, as well as for condensable gases, such as CO(2) /CH(4) , propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO(2) plasticization up to 20 atm pressure of pure CO(2) and CO(2) /CH(4) mixtures.


Energy and Environmental Science | 2012

A new class of highly-conducting polymer electrolyte membranes: Aromatic ABA triblock copolymers

Nanwen Li; So Young Lee; Ying-Ling Liu; Young Moo Lee; Michael D. Guiver

Highly proton-conducting polymer electrolyte membrane (PEMs) materials are presented as alternatives to state-of-the-art perfluorinated polymers such as Nafion®. To achieve stable PEMs with efficient ionic nanochannels, novel fully aromatic ABA triblock copolymers (SP3O-b-PAES-b-SP3O) based on sulfonated poly(2,6-diphenyl-1,4-phenylene oxide)s (A, SP3O) and poly(arylene ether sulfone)s (B, PAES) were synthesized. This molecular design for a PEM was implemented to promote the nanophase separation between the hydrophobic polymer chain and hydrophilic ionic groups, and thus to form well-connected hydrophilic nanochannels that are responsible for the water uptake and proton conduction. Relative to other hydrocarbon-based PEMs, the triblock copolymer membranes showed a dramatic enhancement in proton conductivity under partially hydrated conditions, and superior thermal, oxidative and hydrolytic stabilities, suggesting that they have the potential to be utilized as alternative materials in applications operating under partly hydrated environments.

Collaboration


Dive into the Michael D. Guiver's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masakazu Yoshikawa

Kyoto Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Naiying Du

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Dae Sik Kim

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Seung Kim

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nanwen Li

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Yan Gao

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge