Michael D. Hebert
University of Mississippi Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael D. Hebert.
Chromosoma | 2010
Cory G. Toyota; Misty D. Davis; Angela M. Cosman; Michael D. Hebert
Cajal bodies (CBs) are subnuclear domains that participate in spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis and play a part in the assembly of the spliceosomal complex. The CB marker protein, coilin, interacts with survival of motor neuron (SMN) and Sm proteins. Several coilin phosphoresidues have been identified by mass spectrometric analysis. Phosphorylation of coilin affects its self-interaction and localization in the nucleus. We hypothesize that coilin phosphorylation also impacts its binding to SMN and Sm proteins. In vitro binding studies with a C-terminal fragment of coilin and corresponding phosphomimics show that SMN binds preferentially to dephosphorylated analogs and that SmB′ binds preferentially to phosphomimetic constructs. Bacterially expressed full-length coilin binds more SMN and SmB′ than does the C-terminal fragment. Co-immunoprecipitation and phosphatase experiments show that SMN also binds dephosphorylated coilin in vivo. These data show that phosphorylation of coilin influences interaction with its target proteins and, thus, may be significant in managing the flow of snRNPs through the CB.
Molecular Biology of the Cell | 2011
Andrew S. Gilder; Phi M. Do; Zunamys I. Carrero; Angela M. Cosman; Hanna J. Broome; Venkatramreddy Velma; Luis A. Martinez; Michael D. Hebert
This studys findings identify a novel and unexpected function for coilin, independentof its role in snRNP biogenesis, establishing a new link between the DNA damage response and the inhibition of rRNA synthesis.
FEBS Letters | 2006
LaKechia Grant; Jun Sun; Hongzhi Xu; S.H. Subramony; Jonathan B. Chaires; Michael D. Hebert
Friedreichs ataxia (FRDA) is an autosomal recessive trinucleotide repeat disease with no effective therapy. Expanded GAA repeats in the first intron of the FRDA gene are thought to form unusual non‐B DNA conformations that decrease transcription and subsequently reduce levels of the encoded protein, frataxin. Frataxin plays a crucial role in iron metabolism and detoxification. To discover small molecules that increase transcription through the GAA repeat region in FRDA, we have made stable cell lines containing a portion of expanded intron 1 fused to a GFP reporter. Small molecules identified using the competition dialysis method were found to increase FRDA‐intron 1‐reporter gene expression. One of these compounds, pentamidine, increases frataxin levels in patient cells. Thus our approach can be used to detect small molecules of potential therapeutic value in FRDA.
Peptides | 2010
Gene Lee Iii. Bidwell; Angela Whittom; Emily Thomas; Daniel F. Lyons; Michael D. Hebert; Dražen Raucher
Targeting splicing machinery components is an underdeveloped strategy for cancer therapy. Uridine-rich small nuclear ribonucleoproteins (UsnRNPs) are essential spliceosome components that recognize splice sites in newly transcribed RNA. The major spliceosomal snRNPs are comprised of UsnRNA bound by a ring of Sm proteins. The survival of motor neuron (SMN) complex provides specificity for binding of Sm proteins to UsnRNAs. Three of the seven proteins that comprise the Sm core possess post-translationally modified C-terminal symmetric dimethylarginine (sDMA) residues which promote binding of these proteins to SMN. Here we describe a peptide inhibitor of sDMA that is capable of interfering with SMN/SmB interaction. The inhibitory peptide was attached to elastin-like polypeptide, a thermally responsive macromolecular carrier, in order to increase its stability and allow enhancement of its cellular uptake by thermal targeting. The fusion polypeptide inhibited the interaction of SMN/SmB, inhibited proliferation, and induced apoptosis in HeLa cells.
PLOS ONE | 2012
Hanna J. Broome; Michael D. Hebert
Coilin is known as the marker protein for Cajal bodies (CBs), subnuclear domains important for the biogenesis of small nuclear ribonucleoproteins (snRNPs) which function in pre-mRNA splicing. CBs associate non-randomly with U1 and U2 gene loci, which produce the small nuclear RNA (snRNA) component of the respective snRNP. Despite recognition as the CB marker protein, coilin is primarily nucleoplasmic, and the function of this fraction is not fully characterized. Here we show that coilin binds double stranded DNA and has RNase activity in vitro. U1 and U2 snRNAs undergo a processing event of the primary transcript prior to incorporation in the snRNP. We find that coilin displays RNase activity within the CU region of the U2 snRNA primary transcript in vitro, and that coilin knockdown results in accumulation of the 3′ pre-processed U1 and U2 snRNA. These findings present new characteristics of coilin in vitro, and suggest additional functions of the protein in vivo.
Cellular and Molecular Life Sciences | 2008
A. A. Whittom; H. Xu; Michael D. Hebert
Abstract.Cajal bodies (CBs) and Gems are nuclear domains that contain factors responsible for spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis. The marker protein for CBs is coilin. In addition to snRNPs, coilin and other factors, canonical CBs contain the survivor of motor neuron protein (SMN). SMN can also localize to Gems. Considering the important role that coilin plays in the formation and composition of CBs, we tested the splicing efficiency of several cell lines that vary in regards to coilin level and modification using an artificial reporter substrate. We found that cells with both hypomethylated coilin and Gems are more efficient at reporter splicing compared to cells in which SMN localizes to CBs. In contrast, coilin reduction, which induces Gem formation, decreases cell proliferation and artificial reporter splicing. These findings demonstrate that coilin modifications or levels impact artificial reporter splicing, possibly by influencing snRNP biogenesis.
Journal of Molecular Biology | 2013
Hanna J. Broome; Michael D. Hebert
Coilin is widely known as the protein marker of the Cajal body, a subnuclear domain important to the biogenesis of small nuclear ribonucleoproteins and telomerase, complexes that are crucial to pre-messenger RNA splicing and telomere maintenance, respectively. Extensive studies have characterized the interaction between coilin and the various other protein components of CBs and related subnuclear domains; however, only a few have examined interactions between coilin and nucleic acid. We have recently published that coilin is tightly associated with nucleic acid, displays RNase activity in vitro, and is redistributed to the ribosomal RNA (rRNA)-rich nucleoli in cells treated with the DNA-damaging agents cisplatin and etoposide. Here, we report a specific in vivo association between coilin and rRNA, U small nuclear RNA (snRNA), and human telomerase RNA, which is altered upon treatment with DNA-damaging agents. Using chromatin immunoprecipitation, we provide evidence of coilin interaction with specific regions of U snRNA gene loci. We have also utilized bacterially expressed coilin fragments in order to map the region(s) important for RNA binding and RNase activity in vitro. Additionally, we provide evidence of coilin involvement in the processing of human telomerase RNA both in vitro and in vivo.
FEBS Letters | 2010
Venkatramreddy Velma; Zunamys I. Carrero; Angela M. Cosman; Michael D. Hebert
MINT‐8052983:coilin (uniprotkb:P38432) physically interacts (MI:0915) with SmB′ (uniprotkb:P14678) by pull down (MI:0096)MINT‐8052941:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku70 (uniprotkb:P12956) by competition binding (MI:0405)MINT‐8052765:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by pull down (MI:0096)MINT‐8052971:coilin (uniprotkb:P38432) physically interacts (MI:0915) with SMN (uniprotkb:Q16637) by pull down (MI:0096)MINT‐8052957:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by competition binding (MI:0405)MINT‐8052894, MINT‐8052908:coilin (uniprotkb:P38432) binds (MI:0407) to Ku80 (uniprotkb:P13010) by pull down (MI:0096)MINT‐8052804:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by anti bait coimmunoprecipitation (MI:0006)MINT‐8052925:coilin (uniprotkb:P38432) binds (MI:0407) to Ku70 (uniprotkb:P12956) by pull down (MI:0096)MINT‐8052786:Ku80 (uniprotkb:P13010) physically interacts (MI:0914) with coilin (uniprotkb:P38432) and Ku70 (uniprotkb:P12956) by anti bait coimmunoprecipitation (MI:0006)MINT‐8052776:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku70 (uniprotkb:P12956) by pull down (MI:0096)
PLOS ONE | 2011
Zunamys I. Carrero; Venkatramreddy Velma; Heather E. Douglas; Michael D. Hebert
Coilin is a nuclear phosphoprotein that accumulates in Cajal bodies (CBs). CBs participate in ribonucleoprotein and telomerase biogenesis, and are often found in cells with high transcriptional demands such as neuronal and cancer cells, but can also be observed less frequently in other cell types such as fibroblasts. Many proteins enriched within the CB are phosphorylated, but it is not clear what role this modification has on the activity of these proteins in the CB. Coilin is considered to be the CB marker protein and is essential for proper CB formation and composition in mammalian cells. In order to characterize the role of coilin phosphorylation on CB formation, we evaluated various coilin phosphomutants using transient expression. Additionally, we generated inducible coilin phosphomutant cell lines that, when used in combination with endogenous coilin knockdown, allow for the expression of the phosphomutants at physiological levels. Transient expression of all coilin phosphomutants except the phosphonull mutant (OFF) significantly reduces proliferation. Interestingly, a stable cell line induced to express the coilin S489D phosphomutant displays nucleolar accumulation of the mutant and generates a N-terminal degradation product; neither of which is observed upon transient expression. A N-terminal degradation product and nucleolar localization are also observed in a stable cell line induced to express a coilin phosphonull mutant (OFF). The nucleolar localization of the S489D and OFF coilin mutants observed in the stable cell lines is decreased when endogenous coilin is reduced. Furthermore, all the phosphomutant cells lines show a significant reduction in CB formation when compared to wild-type after endogenous coilin knockdown. Cell proliferation studies on these lines reveal that only wild-type coilin and the OFF mutant are sufficient to rescue the reduction in proliferation associated with endogenous coilin depletion. These results emphasize the role of coilin phosphorylation in the formation and activity of CBs.
Biology Open | 2013
Hanna J. Broome; Zunamys I. Carrero; Heather E. Douglas; Michael D. Hebert
Summary The Cajal body (CB) is a domain of concentrated components found within the nucleus of cells in an array of species that is functionally important for the biogenesis of telomerase and small nuclear ribonucleoproteins. The CB is a dynamic structure whose number and size change during the cell cycle and is associated with other nuclear structures and gene loci. Coilin, also known as the marker protein for the CB, is a phosphoprotein widely accepted for its role in maintaining CB integrity. Recent studies have been done to further elucidate functional activities of coilin apart from its structural role in the CB in an attempt to explore the rationale for coilin expression in cells that have few CBs or lack them altogether. Here we show that the RNA association profile of coilin changes in mitosis with respect to that during interphase. We provide evidence of transcriptional and/or processing dysregulation of several CB-related RNA transcripts as a result of ectopic expression of both wild-type and phosphomutant coilin proteins. We also show apparent changes in transcription and/or processing of these transcripts upon coilin knockdown in both transformed and primary cell lines. Additionally, we provide evidence of specific coilin RNase activity regulation, on both U2 and hTR transcripts, by phosphorylation of a single residue, serine 489. Collectively, these results point to additional functions for coilin that are regulated by phosphorylation.