Michael D. Henry
Howard Hughes Medical Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael D. Henry.
Nature | 2002
Steven A. Moore; Fumiaki Saito; Jianguo Chen; Daniel E. Michele; Michael D. Henry; Albee Messing; Ronald D. Cohn; Susan E. Ross-Barta; Steve Westra; Roger A. Williamson; Toshinori Hoshi; Kevin P. Campbell
Fukuyama congenital muscular dystrophy (FCMD), muscle–eye–brain disease (MEB), and Walker–Warburg syndrome are congenital muscular dystrophies (CMDs) with associated developmental brain defects. Mutations reported in genes of FCMD and MEB patients suggest that the genes may be involved in protein glycosylation. Dystroglycan is a highly glycosylated component of the muscle dystrophin–glycoprotein complex that is also expressed in brain, where its function is unknown. Here we show that brain-selective deletion of dystroglycan in mice is sufficient to cause CMD-like brain malformations, including disarray of cerebral cortical layering, fusion of cerebral hemispheres and cerebellar folia, and aberrant migration of granule cells. Dystroglycan-null brain loses its high-affinity binding to the extracellular matrix protein laminin, and shows discontinuities in the pial surface basal lamina (glia limitans) that probably underlie the neuronal migration errors. Furthermore, mutant mice have severely blunted hippocampal long-term potentiation with electrophysiologic characterization indicating that dystroglycan might have a postsynaptic role in learning and memory. Our data strongly support the hypothesis that defects in dystroglycan are central to the pathogenesis of structural and functional brain abnormalities seen in CMD.
Cell | 1998
Michael D. Henry; Kevin P. Campbell
Basement membranes are composed of ordered arrays of characteristic extracellular matrix proteins, but little is known about the assembly of these structures in vivo. We have investigated the function of dystroglycan, a cell-surface laminin receptor expressed by cells contacting basement membranes in developing and adult tissues. We find that dystroglycan is required for the formation of a basement membrane in embryoid bodies. Our results further indicate that dystroglycanlaminin interactions are prerequisite for the deposition of other basement membrane proteins. Dystroglycan may exert its influence on basement membrane assembly by binding soluble laminin and organizing it on the cell surface. These data establish a role for dystroglycan in the assembly of basement membranes and suggest fundamental mechanisms underlying this process.
Current Opinion in Cell Biology | 1999
Michael D. Henry; Kevin P. Campbell
Dystroglycan connects the extracellular matrix and cytoskeleton. Key findings in the past year indicate that dystroglycan interacts with a wider repertoire of extracellular ligands than originally appreciated, that dystroglycan plays a critical role in organizing extracellular matrix molecules on the cell surface and in basement membranes, and that at least two human pathogens utilize dystroglycan to gain access to host cells. Together, these advances begin to help elucidate important biological roles for dystroglycan in development and disease.
Current Opinion in Cell Biology | 1996
Michael D. Henry; Kevin P. Campbell
Dystroglycan provides a crucial linkage between the cytoskeleton and the basement membrane for skeletal muscle cells. Disruption of this linkage leads to various forms of muscular dystrophy. Significant recent advances in understanding the structure and function of dystroglycan include detailed in vitro and in vivo analyses of its binding partners in muscle, an examination of its function at the neuromuscular junction, and emerging evidence of its roles in nonmuscle tissues.
Neuron | 2000
R. Mark Grady; Heather Zhou; Jeanette M. Cunningham; Michael D. Henry; Kevin P. Campbell; Joshua R. Sanes
The dystrophin-glycoprotein complex (DGC) links the cytoskeleton of muscle fibers to their extracellular matrix. Using knockout mice, we show that a cytoplasmic DGC component, alpha-dystrobrevin (alpha-DB), is dispensable for formation of the neuromuscular junction (NMJ) but required for maturation of its postsynaptic apparatus. We also analyzed double and triple mutants lacking other cytoskeletal DGC components (utrophin and dystrophin) and myotubes lacking a alpha-DB or a transmembrane DGC component (dystroglycan). Our results suggest that alpha-DB acts via its linkage to the DGC to enhance the stability of postsynaptic specializations following their DGC-independent formation; dystroglycan may play additional roles in assembling synaptic basal lamina. Together, these results demonstrate involvement of distinct protein complexes in the formation and maintenance of the synapse and implicate the DGC in the latter process.
Cell | 2002
Ronald D. Cohn; Michael D. Henry; Daniel E. Michele; Rita Barresi; Fumiaki Saito; Steven A. Moore; Jason D. Flanagan; Mark W. Skwarchuk; Michael E. C. Robbins; Roger A. Williamson; Kevin P. Campbell
Striated muscle-specific disruption of the dystroglycan (DAG1) gene results in loss of the dystrophin-glycoprotein complex in differentiated muscle and a remarkably mild muscular dystrophy with hypertrophy and without tissue fibrosis. We find that satellite cells, expressing dystroglycan, support continued efficient regeneration of skeletal muscle along with transient expression of dystroglycan in regenerating muscle fibers. We demonstrate a similar phenomenon of reexpression of functional dystroglycan in regenerating muscle fibers in a mild form of human muscular dystrophy caused by disruption of posttranslational dystroglycan processing. Thus, maintenance of regenerative capacity by satellite cells expressing dystroglycan is likely responsible for mild disease progression in mice and possibly humans. Therefore, inadequate repair of skeletal muscle by satellite cells represents an important mechanism affecting the pathogenesis of muscular dystrophy.
Current Opinion in Cell Biology | 1998
Madeleine Durbeej; Michael D. Henry; Kevin P. Campbell
Our understanding of the structure and function of dystroglycan, a cell surface laminin/agrin receptor, has increased dramatically over the past two years. Structural studies, analysis of its binding partners, and targeted gene disruption have all contributed to the elucidation of the biological role of dystroglycan in development and disease. It is now apparent that dystroglycan plays a critical role in the pathogenesis of several muscular dystrophies and serves as a receptor for a human pathogen as well as being involved in early development, organ morphogenesis, and synaptogenesis.
Human Molecular Genetics | 1997
Roger A. Williamson; Michael D. Henry; Karla J. Daniels; Ronald F. Hrstka; Jane C. Lee; Yoshihide Sunada; Oxana Ibraghimov-Beskrovnaya; Kevin P. Campbell
Cancer Research | 2002
John L. Muschler; Dinah Levy; Roseanne Boudreau; Michael D. Henry; Kevin P. Campbell; Mina J. Bissell
Human Pathology | 2001
Michael D. Henry; Michael B. Cohen; Kevin P. Campbell