Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael D. Huband is active.

Publication


Featured researches published by Michael D. Huband.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore

J. Richard Miller; Steve Dunham; Igor Mochalkin; Craig Banotai; Matthew Bowman; Susan Buist; Bill Dunkle; Debra Hanna; H. James Harwood; Michael D. Huband; Alla Karnovsky; Michael Kuhn; Chris Limberakis; Jia Y. Liu; Shawn Mehrens; W. Thomas Mueller; Lakshmi Narasimhan; Adam Ogden; Jeff Ohren; J. V. N. Vara Prasad; John A. Shelly; Laura Skerlos; Mark C. Sulavik; V. Hayden Thomas; Steve VanderRoest; Li Ann Wang; Zhigang Wang; Amy Whitton; Tong Zhu; C. Kendall Stover

As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious Gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.


Clinical Infectious Diseases | 2010

Multicity Outbreak of Linezolid-Resistant Staphylococcus epidermidis Associated with Clonal Spread of a cfr-Containing Strain

Hector Bonilla; Michael D. Huband; Joan Seidel; Helen Schmidt; MaryKay Lescoe; Sandra P. McCurdy; M. Megan Lemmon; Lori Brennan; Amelia Tait-Kamradt; Laura A. Puzniak; John P. Quinn

We report a multicity outbreak of cfr-containing linezolid-resistant Staphylococcus epidermidis in Ohio. Thirty-nine isolates were obtained from 2 hospitals. Two clones with different mechanisms of linezolid resistance were circulating in hospital A. One of these contained the cfr gene, and the other a ribosomal mutation. The clone containing cfr was identical in both hospitals.


ACS Chemical Biology | 2009

Discovery of Antibacterial Biotin Carboxylase Inhibitors by Virtual Screening and Fragment-Based Approaches.

Igor Mochalkin; J. Richard Miller; Lakshmi Narasimhan; Venkataraman Thanabal; Paul Erdman; Philip B. Cox; J. V. N. Vara Prasad; Sandra Lightle; Michael D. Huband; C. Kendall Stover

As part of our effort to inhibit bacterial fatty acid biosynthesis through the recently validated target biotin carboxylase, we employed a unique combination of two emergent lead discovery strategies. We used both de novo fragment-based drug discovery and virtual screening, which employs 3D shape and electrostatic property similarity searching. We screened a collection of unbiased low-molecular-weight molecules and identified a structurally diverse collection of weak-binding but ligand-efficient fragments as potential building blocks for biotin carboxylase ATP-competitive inhibitors. Through iterative cycles of structure-based drug design relying on successive fragment costructures, we improved the potency of the initial hits by up to 3000-fold while maintaining their ligand-efficiency and desirable physicochemical properties. In one example, hit-expansion efforts resulted in a series of amino-oxazoles with antibacterial activity. These results successfully demonstrate that virtual screening approaches can substantially augment fragment-based screening approaches to identify novel antibacterial agents.


Journal of Medicinal Chemistry | 2012

Potent Inhibitors of LpxC for the Treatment of Gram-Negative Infections

Matthew Frank Brown; Usa Reilly; Joseph A. Abramite; Robert M. Oliver; Rose Barham; Ye Che; Jinshan Michael Chen; Elizabeth M. Collantes; Seung Won Chung; Charlene R. Desbonnet; Jonathan L. Doty; Matthew Doroski; Juntyma J. Engtrakul; Thomas M. Harris; Michael D. Huband; John D. Knafels; Karen L. Leach; Shenping Liu; Anthony Marfat; Andrea Marra; Eric McElroy; Michael Melnick; Carol A. Menard; Justin Ian Montgomery; Lisa Mullins; Mark C. Noe; John P. O’Donnell; Joseph Penzien; Mark Stephen Plummer; Loren M. Price

In this paper, we present the synthesis and SAR as well as selectivity, pharmacokinetic, and infection model data for representative analogues of a novel series of potent antibacterial LpxC inhibitors represented by hydroxamic acid.


Antimicrobial Agents and Chemotherapy | 2007

In Vitro and In Vivo Activities of PD 0305970 and PD 0326448, New Bacterial Gyrase/Topoisomerase Inhibitors with Potent Antibacterial Activities versus Multidrug-Resistant Gram-Positive and Fastidious Organism Groups

Michael D. Huband; Michael A. Cohen; Margaret Zurack; Debra Hanna; Laura Skerlos; Mark C. Sulavik; Glenn Gibson; Jeffrey W. Gage; Edmund L. Ellsworth; Michael Andrew Stier; Stephen J. Gracheck

ABSTRACT PD 0305970 and PD 0326448 are new bacterial gyrase and topoisomerase inhibitors (quinazoline-2,4-diones) that possess outstanding in vitro and in vivo activities against a wide spectrum of bacterial species including quinolone- and multidrug-resistant gram-positive and fastidious organism groups. The respective MICs (μg/ml) for PD 0305970 capable of inhibiting ≥90% of bacterial strains tested ranged from 0.125 to 0.5 versus staphylococci, 0.03 to 0.06 versus streptococci, 0.25 to 2 versus enterococci, and 0.25 to 0.5 versus Moraxella catarrhalis, Haemophilus influenzae, Listeria monocytogenes, Legionella pneumophila, and Neisseria spp. PD 0326448 MIC90s were generally twofold higher versus these same organism groups. Comparative quinolone MIC90 values were 4- to 512-fold higher than those of PD 0305970. In testing for frequency of resistance, PD 0305970 and levofloxacin showed low levels of development of spontaneous resistant mutants versus both Staphylococcus aureus and Streptococcus pneumoniae. Unlike quinolones, which target primarily gyrA and parC, analysis of resistant mutants in S. pneumoniae indicates that the likely targets of PD 0305970 are gyrB and parE. PD 0305970 demonstrated rapid bactericidal activity by in vitro time-kill testing versus streptococci. This bactericidal activity carried over to in vivo testing, where PD 0305970 and PD 0326448 displayed outstanding Streptococcus pyogenes 50% protective doses (PD50s) (oral dosing) of 0.7 and 3.6 mg/kg, respectively (ciprofloxacin and levofloxacin PD50s were >100 and 17.7 mg/kg, respectively). PD 0305970 was also potent in a pneumococcal pneumonia mouse infection model (PD50 = 3.2 mg/kg) and was 22-fold more potent than levofloxacin.


Journal of Medicinal Chemistry | 2012

Pyridone Methylsulfone Hydroxamate LpxC Inhibitors for the Treatment of Serious Gram-Negative Infections

Justin Ian Montgomery; Matthew Frank Brown; Usa Reilly; Loren M. Price; Joseph A. Abramite; Rose Barham; Ye Che; Jinshan Michael Chen; Seung Won Chung; E.M Collantes; Charlene R. Desbonnet; M Doroski; Jonathan L. Doty; J.J Engtrakul; Thomas M. Harris; Michael D. Huband; John D. Knafels; Karen L. Leach; Shenping Liu; Anthony Marfat; Laura A. McAllister; Eric McElroy; Carol A. Menard; Mark J. Mitton-Fry; Lisa Mullins; Mark C. Noe; J O'Donnell; Robert M. Oliver; Joseph Penzien; Mark Stephen Plummer

The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.


Bioorganic & Medicinal Chemistry Letters | 2009

5-(2-Pyrimidinyl)-imidazo[1,2-a]pyridines are antibacterial agents targeting the ATPase domains of DNA gyrase and topoisomerase IV

Jeremy T. Starr; Richard John Sciotti; Debra Hanna; Michael D. Huband; Lisa Mullins; Hongliang Cai; Jeffrey W. Gage; Mandy Lockard; Mark R. Rauckhorst; Robert M. Owen; Manjinder S. Lall; Mark Tomilo; Huifen Chen; Sandra P. McCurdy; Michael R. Barbachyn

Dual inhibitors of bacterial gyrB and parE based on a 5-(2-pyrimidinyl)-imidazo[1,2-a]pyridine template exhibited MICs (microg/mL) of 0.06-64 (Sau), 0.25-64 (MRSA), 0.06-64 (Spy), 0.06-64 (Spn), and 0.03-64 (FQR Spn). Selected examples were efficacious in mouse sepsis and lung infection models at <50mg/kg (PO dosing).


Journal of Medicinal Chemistry | 2009

Discovery of azetidinyl ketolides for the treatment of susceptible and multidrug resistant community-acquired respiratory tract infections.

Thomas V. Magee; Sharon L. Ripp; Bryan Li; Richard A. Buzon; Lou Chupak; Thomas J. Dougherty; Steven M. Finegan; Dennis Girard; Anne E. Hagen; Michael J. Falcone; Kathleen A. Farley; Karl Granskog; Joel R. Hardink; Michael D. Huband; Barbara J. Kamicker; Takushi Kaneko; Michael J. Knickerbocker; Jennifer Liras; Andrea Marra; Ivy Medina; Thuy-Trinh Nguyen; Mark C. Noe; R. Scott Obach; John P. O’Donnell; Joseph Penzien; Usa Reilly; John Schafer; Yue Shen; Gregory G. Stone; Timothy J. Strelevitz

Respiratory tract bacterial strains are becoming increasingly resistant to currently marketed macrolide antibiotics. The current alternative telithromycin (1) from the newer ketolide class of macrolides addresses resistance but is hampered by serious safety concerns, hepatotoxicity in particular. We have discovered a novel series of azetidinyl ketolides that focus on mitigation of hepatotoxicity by minimizing hepatic turnover and time-dependent inactivation of CYP3A isoforms in the liver without compromising the potency and efficacy of 1.


Antimicrobial Agents and Chemotherapy | 2015

In Vitro Antibacterial Activity of AZD0914: A New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-Positive, Fastidious Gram-Negative, and Atypical Bacteria

Michael D. Huband; Patricia A. Bradford; Linda G. Otterson; Gregory Basarab; Amy Kutschke; Robert A. Giacobbe; Sara A. Patey; Richard A. Alm; Marie E. Potter; Paul F. Miller; John P. Mueller

ABSTRACT AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development.


Journal of Antimicrobial Chemotherapy | 2010

Emergence of linezolid-resistant coagulase-negative Staphylococcus in a cancer centre linked to increased linezolid utilization

Victor E. Mulanovich; Michael D. Huband; Sandra P. McCurdy; M. Megan Lemmon; Mary Kay Lescoe; Ying Jiang; Kenneth V. I. Rolston; P. Rocco LaSala

OBJECTIVES The prevalence of linezolid-resistant coagulase-negative Staphylococcus (CoNS) in the MD Anderson Cancer Center rose from 0.6% in 2007 to 5.5% in 2009. The aim of our study was to analyse the relationship between linezolid use and an outbreak of linezolid-resistant CoNS. PATIENTS AND METHODS We retrospectively identified 27 infection or colonization events. Eleven isolates were available for supplemental investigation; species identification, clonal relatedness and linezolid resistance mutation analysis. The medical records of the affected patients were reviewed and linezolid utilization data were obtained from the pharmacy. RESULTS Available isolates were confirmed as clonally related Staphylococcus epidermidis. Partial 23S rRNA gene sequencing found a G2576T mutation in all of the isolates tested. All patients received linezolid within 3 months prior to an event. Patients without a prior hospitalization had a longer time from admission to event; 29 versus 3.5 days (P = 0.002). The outbreak was preceded by a 51% increase in inpatient linezolid utilization and 64% of affected patients belonged to the leukaemia service, which had a utilization rate 3.1 times that of the other services (95% confidence interval: 2.96-3.23). CONCLUSIONS Increased linezolid utilization preceded the appearance of a linezolid-resistant CoNS clone. Patients probably acquired the clonal strain nosocomially, given the longer time from admission to event among patients with no previous admission to the MD Anderson Cancer Center. Linezolid administration then selected this strain, since all patients received linezolid prior to an event. A linezolid utilization rate of >or=13 defined daily doses/100 patient-days was similar to that reported in two other outbreaks and may be the threshold required to generate an outbreak.

Collaboration


Dive into the Michael D. Huband's collaboration.

Top Co-Authors

Avatar

Helio S. Sader

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge