Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael D. McRaven is active.

Publication


Featured researches published by Michael D. McRaven.


Journal of Virology | 2013

Defining the Interaction of HIV-1 with the Mucosal Barriers of the Female Reproductive Tract

Ann M. Carias; Scott McCoombe; Michael D. McRaven; Meegan R. Anderson; Nicole Galloway; Nathan Vandergrift; Angela J. Fought; John R. Lurain; Maurice Duplantis; Ronald S. Veazey; Thomas J. Hope

ABSTRACT Worldwide, HIV-1 infects millions of people annually, the majority of whom are women. To establish infection in the female reproductive tract (FRT), HIV-1 in male ejaculate must overcome numerous innate and adaptive immune factors, traverse the genital epithelium, and establish infection in underlying CD4+ target cells. How the virus achieves this remains poorly defined. By utilizing a new technique, we define how HIV-1 interacts with different tissues of the FRT using human cervical explants and in vivo exposure in the rhesus macaque vaginal transmission model. Despite previous claims of the squamous epithelium being an efficient barrier to virus entry, we reveal that HIV-1 can penetrate both intact columnar and squamous epithelial barriers to depths where the virus can encounter potential target cells. In the squamous epithelium, we identify virus entry occurring through diffusive percolation, penetrating areas where cell junctions are absent. In the columnar epithelium, we illustrate that virus does not transverse barriers as well as previously thought due to mucus impediment. We also show a statistically significant correlation between the viral load of inocula and the ability of HIV-1 to pervade the squamous barrier. Overall, our results suggest a diffusive percolation mechanism for the initial events of HIV-1 entry. With these data, we also mathematically extrapolate the number of HIV-1 particles that penetrate the mucosa per coital act, providing a biological description of the mechanism for HIV-1 transmission during the acute and chronic stages of infection.


Mucosal Immunology | 2013

Human cervicovaginal mucus contains an activity that hinders HIV-1 movement

Shetha Shukair; Shannon A. Allen; Gianguido C. Cianci; Daniel J. Stieh; Meegan R. Anderson; Samir M. Baig; Casey J. Gioia; Eric J. Spongberg; Sarah M. Kauffman; Michael D. McRaven; Howard Y. Lakougna; Cassing Hammond; Patrick F. Kiser; Thomas J. Hope

Cervical and vaginal epithelia are primary barriers against HIV type I (HIV-1) entry during male-to-female transmission. Cervical mucus (CM) is produced by the endocervix and forms a layer locally as well as in the vaginal compartment in the form of cervicovaginal mucus (CVM). To study the potential barrier function of each mucus type during HIV-1 transmission, we quantified HIV-1 mobility in CM and CVM ex vivo using fluorescent microscopy. Virions and 200-nm PEGylated beads were digitally tracked and mean-squared displacement was calculated. The mobility of beads increased significantly in CVM compared with CM, consistent with the known decreased mucin concentration of CVM. Unexpectedly, HIV-1 diffusion was significantly hindered in the same CVM samples in which bead diffusion was unhindered. Inhibition of virus transport was envelope-independent. Our results reveal a previously unknown activity in CVM that is capable of impeding HIV-1 mobility to enhance mucosal barrier function.


AIDS | 2010

Keratinization of the adult male foreskin and implications for male circumcision.

Minh H. Dinh; Michael D. McRaven; Z. L. Kelley; Sudhir Penugonda; Thomas J. Hope

Objective:The theory that a more thinly keratinized inner foreskin leads to increased HIV-1 susceptibility has been based on relatively little published data. We sought to quantify the keratin thicknesses of the inner and outer foreskin to determine the plausibility of this hypothesis. Design:We took repeated measurements of the keratin layer of 16 adult male foreskins to determine whether differences existed between the inner and outer foreskin. Methods:Adult foreskins were collected from consenting donors undergoing elective male circumcision for unknown medical indications in Chicago, Illinois, USA. Specimens were processed, sectioned and stained for keratin using antifilaggrin fluorescent antibodies. Slides stained with hematoxylin and eosin were used as controls and compared with results from previously published studies using this method. Keratin layers were measured in a standardized fashion for each specimen. Results:Comparing our fluorescence-based analysis with previously published immunohistochemical methods revealed that our method was highly accurate for measuring foreskin keratin thickness. There was significant heterogeneity in the keratin thickness of the inner and outer aspects of the male foreskin within and between the different donors. There was no significant difference between the inner and outer foreskin keratin thickness (25.37 ± 12.51 and 20.54 ± 12.51 μm, respectively; P = 0.451). Conclusion:We found no difference between the keratinization of the inner and outer aspects of the adult male foreskin. Keratin layers alone are unlikely to explain why uncircumcised men are at higher risk for HIV infection.


Virology | 2010

Identification of residues within the L2 region of rhesus TRIM5α that are required for retroviral restriction and cytoplasmic body localization

Jaya Sastri; Christopher O'Connor; Cindy M. Danielson; Michael D. McRaven; Patricio Perez; Felipe Diaz-Griffero; Edward M. Campbell

The intracellular restriction factor TRIM5alpha, inhibits infection by numerous retroviruses in a species-specific manner. The best characterized example of this restriction is the TRIM5alpha protein from rhesus macaques (rhTRIM5alpha), which potently inhibits HIV-1 infection. TRIM5alpha localizes to cytoplasmic assemblies of protein referred to as cytoplasmic bodies, though the role that these bodies play in retroviral restriction is unclear. We employed a series of truncation mutants to identify a discrete region, located within the Linker2 region connecting the coiled-coil and B30.2/PRYSPRY domains of TRIM5alpha, which is required for cytoplasmic body localization. Deletion of this region in the context of full-length rhTRIM5alpha abrogates cytoplasmic body localization. Alanine mutagenesis of the residues in this region identifies two stretches of amino acids that are required for both cytoplasmic body localization and retroviral restriction. This work suggests that the determinants that mediate TRIM5alpha localization to cytoplasmic bodies play a requisite role in retroviral restriction.


PLOS Pathogens | 2016

Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses

Matthew Zirui Tay; Pinghuang Liu; La Tonya D. Williams; Michael D. McRaven; Sheetal Sawant; Thaddeus C. Gurley; Thomas T. Xu; S. Moses Dennison; Hua-Xin Liao; Agnès Laurence Chenine; S. Munir Alam; M. Anthony Moody; Thomas J. Hope; Barton F. Haynes; Georgia D. Tomaras

Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine-induced antibodies and therapeutic antibodies will enable a better understanding of their capacity to prevent and/or control HIV-1 infection in vivo.


Biomaterials | 2011

Inhibition of the Transport of HIV In Vitro Using a pH-Responsive Synthetic Mucin-Like Polymer System

Alamelu Mahalingam; Julie I. Jay; Kristofer Langheinrich; Shetha Shukair; Michael D. McRaven; Lisa C. Rohan; Betsy C. Herold; Thomas J. Hope; Patrick F. Kiser

In conjunction with the routine role of delivering the active ingredient, carefully designed drug delivery vehicles can also provide ancillary functions that augment the overall efficacy of the system. Inspired by the ability of the cervicovaginal mucus to impede the movement of HIV virions at acidic pH, we have engineered a pH-responsive synthetic polymer that shows improved barrier properties over the naturally occurring cervicovaginal mucus by inhibiting viral transport at both acidic and neutral pH. The pH-responsive synthetic mucin-like polymer is constructed with phenylboronic acid (PBA) and salicylhydroxamic acid (SHA), each individually copolymerized with a 2-hydroxypropyl methacrylamide (pHPMA) polymer backbone. At pH 4.8, the crosslinked polymers form a transient network with a characteristic relaxation time of 0.9 s and elastic modulus of 11 Pa. On addition of semen, the polymers form a densely crosslinked elastic network with a characteristic relaxation time greater than 60 s and elastic modulus of 1800 Pa. Interactions between the PBA-SHA crosslinked polymers and mucin at acidic pH showed a significant increase in elastic modulus and crosslink lifetime (p < 0.05). A transport assay revealed that migration of HIV and cells was significantly impeded by the polymer network at pH ≥ 4.8 with a diffusion coefficient of 1.60 x 10(-4) μm(2)/s for HIV. Additionally, these crosslinked polymers did not induce symptoms of toxicity or irritation in either human vaginal explants or a mouse model. In summary, the pH-responsive crosslinked polymer system reported here holds promise as a class of microbicide delivery vehicle that could inhibit the transport of virions from semen to the target tissue and, thereby, contribute to the overall activity of the microbicide formulation.


PLOS Pathogens | 2015

Visualization of HIV-1 interactions with penile and foreskin epithelia: clues for female-to-male HIV transmission.

Minh H. Dinh; Meegan R. Anderson; Michael D. McRaven; Gianguido C. Cianci; Scott McCoombe; Z. L. Kelley; Casey J. Gioia; Angela J. Fought; Alfred Rademaker; Ronald S. Veazey; Thomas J. Hope

To gain insight into female-to-male HIV sexual transmission and how male circumcision protects against this mode of transmission, we visualized HIV-1 interactions with foreskin and penile tissues in ex vivo tissue culture and in vivo rhesus macaque models utilizing epifluorescent microscopy. 12 foreskin and 14 cadaveric penile specimens were cultured with R5-tropic photoactivatable (PA)-GFP HIV-1 for 4 or 24 hours. Tissue cryosections were immunofluorescently imaged for epithelial and immune cell markers. Images were analyzed for total virions, proportion of penetrators, depth of virion penetration, as well as immune cell counts and depths in the tissue. We visualized individual PA virions breaching penile epithelial surfaces in the explant and macaque model. Using kernel density estimated probabilities of localizing a virion or immune cell at certain tissue depths revealed that interactions between virions and cells were more likely to occur in the inner foreskin or glans penis (from local or cadaveric donors, respectively). Using statistical models to account for repeated measures and zero-inflated datasets, we found no difference in total virions visualized at 4 hours between inner and outer foreskins from local donors. At 24 hours, there were more virions in inner as compared to outer foreskin (0.0495 +/− 0.0154 and 0.0171 +/− 0.0038 virions/image, p = 0.001). In the cadaveric specimens, we observed more virions in inner foreskin (0.0507 +/− 0.0079 virions/image) than glans tissue (0.0167 +/− 0.0033 virions/image, p<0.001), but a greater proportion was seen penetrating uncircumcised glans tissue (0.0458 +/− 0.0188 vs. 0.0151 +/− 0.0100 virions/image, p = 0.099) and to significantly greater mean depths (29.162 +/− 3.908 vs. 12.466 +/− 2.985 μm). Our in vivo macaque model confirmed that virions can breach penile squamous epithelia in a living model. In summary, these results suggest that the inner foreskin and glans epithelia may be important sites for HIV transmission in uncircumcised men.


PLOS ONE | 2012

Nanoparticle Transport from Mouse Vagina to Adjacent Lymph Nodes

Byron Ballou; Susan Andreko; Elvira Osuna-Highley; Michael D. McRaven; Tina Catalone; Marcel P. Bruchez; Thomas J. Hope; Mohamed E. Labib

To test the feasibility of localized intravaginal therapy directed to neighboring lymph nodes, the transport of quantum dots across the vaginal wall was investigated. Quantum dots instilled into the mouse vagina were transported across the vaginal mucosa into draining lymph nodes, but not into distant nodes. Most of the particles were transported to the lumbar nodes; far fewer were transported to the inguinal nodes. A low level of transport was evident at 4 hr after intravaginal instillation, and transport peaked at about 36 hr after instillation. Transport was greatly enhanced by prior vaginal instillation of Nonoxynol-9. Hundreds of micrograms of nanoparticles/kg tissue (ppb) were found in the lumbar lymph nodes at 36 hr post-instillation. Our results imply that targeted transport of microbicides or immunogens from the vagina to local lymph organs is feasible. They also offer an in vivo model for assessing the toxicity of compounds intended for intravaginal use.


Journal of Virology | 2015

Characterization of the Influence of Semen-Derived Enhancer of Virus Infection on the Interaction of HIV-1 with Female Reproductive Tract Tissues

Shannon A. Allen; Ann M. Carias; Meegan R. Anderson; Eneniziaogochukwu A. Okocha; Lorie Benning; Michael D. McRaven; Z. L. Kelley; John R. Lurain; Ronald S. Veazey; Thomas J. Hope

ABSTRACT The majority of human immunodeficiency virus type 1 (HIV-1) transmission events occur in women when semen harboring infectious virus is deposited onto the mucosal barriers of the vaginal, ectocervical, and endocervical epithelia. Seminal factors such as semen-derived enhancer of virus infection (SEVI) fibrils were previously shown to greatly enhance the infectivity of HIV-1 in cell culture systems. However, when SEVI is intravaginally applied to living animals, there is no effect on vaginal transmission. To define how SEVI might function in the context of sexual transmission, we applied HIV-1 and SEVI to intact human and rhesus macaque reproductive tract tissues to determine how it influences virus interactions with these barriers. We show that SEVI binds HIV-1 and sequesters most virions to the luminal surface of the stratified squamous epithelium, significantly reducing the number of virions that penetrated the tissue. In the simple columnar epithelium, SEVI was no longer fibrillar in structure and was detached from virions but allowed significantly deeper epithelial virus penetration. These observations reveal that the action of SEVI in intact tissues is very different in the anatomical context of sexual transmission and begin to explain the lack of stimulation of infection observed in the highly relevant mucosal transmission model. IMPORTANCE The most common mode of HIV-1 transmission in women occurs via genital exposure to the semen of HIV-infected men. A productive infection requires the virus to penetrate female reproductive tract epithelial barriers to infect underlying target cells. Certain factors identified within semen, termed semen-derived enhancers of virus infection (SEVI), have been shown to significantly enhance HIV-1 infectivity in cell culture. However, when applied to the genital tracts of living female macaques, SEVI did not enhance virus transmission. Here we show that SEVI functions very differently in the context of intact mucosal tissues. SEVI decreases HIV-1 penetration of squamous epithelial barriers in humans and macaques. At the mucus-coated columnar epithelial barrier, the HIV-1/SEVI interaction is disrupted. These observations suggest that SEVI may not play a significant stimulatory role in the efficiency of male-to-female sexual transmission of HIV.


Journal of Biomedical Optics | 2017

Colposcopic imaging using visible-light optical coherence tomography

Lian Duan; Michael D. McRaven; Wenzhong Liu; Xiao Shu; Jianmin Hu; Cheng Sun; Ronald S. Veazey; Thomas J. Hope; Hao F. Zhang

Abstract. High-resolution colposcopic optical coherence tomography (OCT) provides key anatomical measures, such as thickness and minor traumatic injury of vaginal epithelium, of the female reproductive tract noninvasively. This information can be helpful in both fundamental investigations in animal models and disease screenings in humans. We present a fiber-based visible-light OCT and two probe designs for colposcopic application. One probe conducts circular scanning using a DC motor, and the other probe is capable of three-dimensional imaging over a 4.6×4.6-mm2 area using a pair of galvo scanners. Using this colposcopic vis-OCT with both probes, we acquired high-resolution images from whole isolated macaque vaginal samples and identified biopsy lesions.

Collaboration


Dive into the Michael D. McRaven's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Z. L. Kelley

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge