Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael D. Nguyen is active.

Publication


Featured researches published by Michael D. Nguyen.


Analytical Chemistry | 2014

High Temporal Resolution Measurements of Dopamine with Carbon Nanotube Yarn Microelectrodes

Christopher B. Jacobs; Ilia N. Ivanov; Michael D. Nguyen; Alexander G. Zestos; B. Jill Venton

Fast-scan cyclic voltammetry (FSCV) can detect small changes in dopamine concentration; however, measurements are typically limited to scan repetition frequencies of 10 Hz. Dopamine oxidation at carbon-fiber microelectrodes (CFMEs) is dependent on dopamine adsorption, and increasing the frequency of FSCV scan repetitions decreases the oxidation current, because the time for adsorption is decreased. Using a commercially available carbon nanotube yarn, we characterized carbon nanotube yarn microelectrodes (CNTYMEs) for high-speed measurements with FSCV. For dopamine, CNTYMEs have a significantly lower ΔEp than CFMEs, a limit of detection of 10 ± 0.8 nM, and a linear response to 25 μM. Unlike CFMEs, the oxidation current of dopamine at CNTYMEs is independent of scan repetition frequency. At a scan rate of 2000 V/s, dopamine can be detected, without any loss in sensitivity, with scan frequencies up to 500 Hz, resulting in a temporal response that is four times faster than CFMEs. While the oxidation current is adsorption-controlled at both CFMEs and CNTYMEs, the adsorption and desorption kinetics differ. The desorption coefficient of dopamine-o-quinone (DOQ), the oxidation product of dopamine, is an order of magnitude larger than that of dopamine at CFMEs; thus, DOQ desorbs from the electrode and can diffuse away. At CNTYMEs, the rates of desorption for dopamine and dopamine-o-quinone are about equal, resulting in current that is independent of scan repetition frequency. Thus, there is no compromise with CNTYMEs: high sensitivity, high sampling frequency, and high temporal resolution can be achieved simultaneously. Therefore, CNTYMEs are attractive for high-speed applications.


Analytical Chemistry | 2016

Carbon Nanotubes Grown on Metal Microelectrodes for the Detection of Dopamine

Cheng Yang; Christopher B. Jacobs; Michael D. Nguyen; Mallikarjunarao Ganesana; Alexander G. Zestos; Ilia N. Ivanov; Alexander A. Puretzky; Christopher M. Rouleau; David B. Geohegan; B. Jill Venton

Microelectrodes modified with carbon nanotubes (CNTs) are useful for the detection of neurotransmitters because the CNTs enhance sensitivity and have electrocatalytic effects. CNTs can be grown on carbon fiber microelectrodes (CFMEs) but the intrinsic electrochemical activity of carbon fibers makes evaluating the effect of CNT enhancement difficult. Metal wires are highly conductive and many metals have no intrinsic electrochemical activity for dopamine, so we investigated CNTs grown on metal wires as microelectrodes for neurotransmitter detection. In this work, we successfully grew CNTs on niobium substrates for the first time. Instead of planar metal surfaces, metal wires with a diameter of only 25 μm were used as CNT substrates; these have potential in tissue applications due to their minimal tissue damage and high spatial resolution. Scanning electron microscopy shows that aligned CNTs are grown on metal wires after chemical vapor deposition. By use of fast-scan cyclic voltammetry, CNT-coated niobium (CNT-Nb) microelectrodes exhibit higher sensitivity and lower ΔEp value compared to CNTs grown on carbon fibers or other metal wires. The limit of detection for dopamine at CNT-Nb microelectrodes is 11 ± 1 nM, which is approximately 2-fold lower than that of bare CFMEs. Adsorption processes were modeled with a Langmuir isotherm, and detection of other neurochemicals was also characterized, including ascorbic acid, 3,4-dihydroxyphenylacetic acid, serotonin, adenosine, and histamine. CNT-Nb microelectrodes were used to monitor stimulated dopamine release in anesthetized rats with high sensitivity. This study demonstrates that CNT-grown metal microelectrodes, especially CNTs grown on Nb microelectrodes, are useful for monitoring neurotransmitters.


PLOS ONE | 2014

Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex.

Michael D. Nguyen; Scott T. Lee; Ashley E. Ross; Matthew Ryals; Vishesh I. Choudhry; B. Jill Venton

Adenosine is a neuroprotective agent that inhibits neuronal activity and modulates neurotransmission. Previous research has shown adenosine gradually accumulates during pathologies such as stroke and regulates neurotransmission on the minute-to-hour time scale. Our lab developed a method using carbon-fiber microelectrodes to directly measure adenosine changes on a sub-second time scale with fast-scan cyclic voltammetry (FSCV). Recently, adenosine release lasting a couple of seconds has been found in murine spinal cord slices. In this study, we characterized spontaneous, transient adenosine release in vivo, in the caudate-putamen and prefrontal cortex of anesthetized rats. The average concentration of adenosine release was 0.17±0.01 µM in the caudate and 0.19±0.01 µM in the prefrontal cortex, although the range was large, from 0.04 to 3.2 µM. The average duration of spontaneous adenosine release was 2.9±0.1 seconds and 2.8±0.1 seconds in the caudate and prefrontal cortex, respectively. The concentration and number of transients detected do not change over a four hour period, suggesting spontaneous events are not caused by electrode implantation. The frequency of adenosine transients was higher in the prefrontal cortex than the caudate-putamen and was modulated by A1 receptors. The A1 antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine, 6 mg/kg i.p.) increased the frequency of spontaneous adenosine release, while the A1 agonist CPA (N6-cyclopentyladenosine, 1 mg/kg i.p.) decreased the frequency. These findings are a paradigm shift for understanding the time course of adenosine signaling, demonstrating that there is a rapid mode of adenosine signaling that could cause transient, local neuromodulation.


Journal of Neurochemistry | 2014

Mechanical stimulation evokes rapid increases in extracellular adenosine concentration in the prefrontal cortex.

Ashley E. Ross; Michael D. Nguyen; Eve Privman; B. Jill Venton

Mechanical perturbations can release ATP, which is broken down to adenosine. In this work, we used carbon‐fiber microelectrodes and fast‐scan cyclic voltammetry to measure mechanically stimulated adenosine in the brain by lowering the electrode 50 μm. Mechanical stimulation evoked adenosine in vivo (average: 3.3 ± 0.6 μM) and in brain slices (average: 0.8 ± 0.1 μM) in the prefrontal cortex. The release was transient, lasting 18 ± 2 s. Lowering a 15‐μm‐diameter glass pipette near the carbon‐fiber microelectrode produced similar results as lowering the actual microelectrode. However, applying a small puff of artificial cerebral spinal fluid was not sufficient to evoke adenosine. Multiple stimulations within a 50‐μm region of a slice did not significantly change over time or damage cells. Chelating calcium with EDTA or blocking sodium channels with tetrodotoxin significantly decreased mechanically evoked adenosine, signifying that the release is activity dependent. An alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptor antagonist, 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione, did not affect mechanically stimulated adenosine; however, the nucleoside triphosphate diphosphohydrolase 1,2 and 3 (NTDPase) inhibitor POM‐1 significantly reduced adenosine so a portion of adenosine is dependent on extracellular ATP metabolism. Thus, mechanical perturbations from inserting a probe in the brain cause rapid, transient adenosine signaling which might be neuroprotective.


Computational and structural biotechnology journal | 2015

Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release.

Michael D. Nguyen; B. Jill Venton

Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future.


Pharmacology Research & Perspectives | 2015

Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism

Michael D. Nguyen; Ashley E. Ross; Matthew Ryals; Scott T. Lee; B. Jill Venton

Adenosine is a neuromodulator that regulates neurotransmission in the brain and central nervous system. Recently, spontaneous adenosine release that is cleared in 3–4 sec was discovered in mouse spinal cord slices and anesthetized rat brains. Here, we examined the clearance of spontaneous adenosine in the rat caudate‐putamen and exogenously applied adenosine in caudate brain slices. The Vmax for clearance of exogenously applied adenosine in brain slices was 1.4 ± 0.1 μmol/L/sec. In vivo, the equilibrative nucleoside transport 1 (ENT1) inhibitor, S‐(4‐nitrobenzyl)‐6‐thioinosine (NBTI) (1 mg/kg, i.p.) significantly increased the duration of adenosine, while the ENT1/2 inhibitor, dipyridamole (10 mg/kg, i.p.), did not affect duration. 5‐(3‐Bromophenyl)‐7‐[6‐(4‐morpholinyl)‐3‐pyrido[2,3‐d]byrimidin‐4‐amine dihydrochloride (ABT‐702), an adenosine kinase inhibitor (5 mg/kg, i.p.), increased the duration of spontaneous adenosine release. The adenosine deaminase inhibitor, erythro‐9‐(2‐hydroxy‐3‐nonyl)adenine (EHNA) (10 mg/kg, i.p.), also increased the duration in vivo. Similarly, NBTI (10 μmol/L), ABT‐702 (100 nmol/L), or EHNA (20 μmol/L) also decreased the clearance rate of exogenously applied adenosine in brain slices. The increases in duration for blocking ENT1, adenosine kinase, or adenosine deaminase individually were similar, about 0.4 sec in vivo; thus, the removal of adenosine on a rapid time scale occurs through three mechanisms that have comparable effects. A cocktail of ABT‐702, NBTI, and EHNA significantly increased the duration by 0.7 sec, so the mechanisms are not additive and there may be additional mechanisms clearing adenosine on a rapid time scale. The presence of multiple mechanisms for adenosine clearance on a time scale of seconds demonstrates that adenosine is tightly regulated in the extracellular space.


ACS Chemical Neuroscience | 2017

Automated Algorithm for Detection of Transient Adenosine Release

Ryan P. Borman; Ying Wang; Michael D. Nguyen; Mallikarjunarao Ganesana; Scott T. Lee; B. Jill Venton

Spontaneous adenosine release events have been discovered in the brain that last only a few seconds. The identification of these adenosine events from fast-scan cyclic voltammetry (FSCV) data is difficult due to the random nature of adenosine release. In this study, we develop an algorithm that automatically identifies and characterizes adenosine transient features, including event time, concentration, and duration. Automating the data analysis reduces analysis time from 10 to 18 h to about 40 min per experiment. The algorithm identifies adenosine based on its two oxidation peaks, the time delay between them, and their current vs time peak ratios. In order to validate the program, four data sets from three independent researchers were analyzed by the algorithm and then compared to manual identification by an analyst. The algorithm resulted in 10 ± 4% false negatives and 9 ± 3% false positives. The specificity of the algorithm was verified by comparing calibration data for adenosine triphosphate (ATP), histamine, hydrogen peroxide, and pH changes and these analytes were not identified as adenosine. Stimulated histamine release in vivo was also not identified as adenosine. The code is modular in design and could be easily adjusted to detect features of spontaneous dopamine or other neurochemical transients in FSCV data.


ACS Chemical Neuroscience | 2017

Transient Adenosine Release Is Modulated by NMDA and GABAB Receptors

Michael D. Nguyen; Ying Wang; Mallikarjunarao Ganesana; B. Jill Venton

Adenosine is a neuroprotective agent that modulates neurotransmission and is modulated by other neurotransmitters. Spontaneous, transient adenosine is a recently discovered mode of signaling where adenosine is released and cleared from the extracellular space quickly, in less than three seconds. Spontaneous adenosine release is regulated by adenosine A1 and A2a receptors, but regulation by other neurotransmitter receptors has not been studied. Here, we examined the effect of glutamate and GABA receptors on the concentration and frequency of spontaneous, transient adenosine release by measuring adenosine with fast-scan cyclic voltammetry in the rat caudate-putamen. The glutamate NMDA antagonist, 3-(R-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 6.25 mg/kg i.p.), increased the frequency of adenosine transients and the concentration of individual transients, but NMDA (agonist, 50 mg/kg, i.p.) did not change the frequency. In contrast, antagonists of other glutamate receptors had no effect on the frequency or concentration of transient adenosine release, including the AMPA antagonist NBQX (15 mg/kg i.p.) and the mGlu2/3 glutamate receptor antagonist LY 341495 (5 mg/kg i.p.). The GABAB antagonist CGP 52432 (30 mg/kg i.p.) significantly decreased the number of adenosine release events while the GABAB agonist baclofen (4 mg/kg i.p.) increased the frequency of adenosine release. The GABAA antagonist bicuculline (5 mg/kg i.p.) had no significant effects on adenosine. NMDA and GABAB likely act presynaptically, affecting the overall cell excitability for vesicular release. The ability to regulate adenosine with NMDA and GABAB receptors will help control the modulatory effects of transient adenosine release.


Sensors and Actuators B-chemical | 2013

Epoxy insulated carbon fiber and carbon nanotube fiber microelectrodes

Alexander G. Zestos; Michael D. Nguyen; Brian L. Poe; Christopher B. Jacobs; B. Jill Venton


ACS Sensors | 2016

Laser Treated Carbon Nanotube Yarn Microelectrodes for Rapid and Sensitive Detection of Dopamine in Vivo

Cheng Yang; Elefterios Trikantzopoulos; Michael D. Nguyen; Christopher B. Jacobs; Ying Wang; Masoud Mahjouri-Samani; Ilia N. Ivanov; B. Jill Venton

Collaboration


Dive into the Michael D. Nguyen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher B. Jacobs

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley E. Ross

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilia N. Ivanov

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Wang

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Cheng Yang

University of Virginia

View shared research outputs
Researchain Logo
Decentralizing Knowledge