Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael D. Obland is active.

Publication


Featured researches published by Michael D. Obland.


Optics Express | 2015

Atmospheric CO(2) column measurements in cloudy conditions using intensity-modulated continuous-wave lidar at 1.57 micron.

Bing Lin; Amin R. Nehrir; F. Wallace Harrison; Edward V. Browell; Syed Ismail; Michael D. Obland; Joel F. Campbell; Jeremy Dobler; Byron L. Meadows; Tai-Fang Fan; Susan A. Kooi

This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-μm CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively. For the case of intervening thin cirrus clouds with an average cloud optical depth of about 0.16 over an arid/semi-arid area, the CO2 column measurements from 12.2 km altitude were found to be consistent with the cloud free conditions with a lower precision due to the additional optical attenuation of the thin clouds. The clear sky precision for this flight campaign case was about 0.72% for a 0.1-s integration, which was close to previously reported flight campaign results. For a vegetated area and lidar path lengths of 8 to 12 km, the precision of the measured differential absorption optical depths to the surface was 1.3 - 2.2% for 0.1-s integration. The precision of the CO2 column measurements to thick clouds with reflectance about 1/10 of that of the surface was about a factor of 2 to 3 lower than that to the surface owing to weaker lidar returns from clouds and a smaller CO2 differential absorption optical depth compared to that for the entire column.


Optics Letters | 2014

Watt-level short-length holmium-doped ZBLAN fiber lasers at 1.2 μm.

Xiushan Zhu; Jie Zong; Kort Wiersma; Robert A. Norwood; Narasimha S. Prasad; Michael D. Obland; Arturo Chavez-Pirson; N. Peyghambarian

In-band core-pumped Ho3+-doped ZBLAN fiber lasers at the 1.2 μm region were investigated with different gain fiber lengths. A 2.4 W 1190 nm all-fiber laser with a slope efficiency of 42% was achieved by using a 10 cm long gain fiber pumped at a maximum available 1150 nm pump power of 5.9 W. A 1178 nm all-fiber laser was demonstrated with an output power of 350 mW and a slope efficiency of 6.5%. High Ho3+ doping in ZBLAN is shown to be effective in producing single-frequency fiber lasers and short-length fiber amplifiers immune from stimulated Brillouin scattering.


Optics Letters | 2014

Super-resolution technique for CW lidar using Fourier transform reordering and Richardson–Lucy deconvolution

Joel F. Campbell; Bing Lin; Amin R. Nehrir; F. Wallace Harrison; Michael D. Obland

An interpolation method is described for range measurements of high precision altimetry with repeating intensity modulated continuous wave (IM-CW) lidar waveforms using binary phase shift keying (BPSK), where the range profile is determined by means of a cross-correlation between the digital form of the transmitted signal and the digitized return signal collected by the lidar receiver. This method uses reordering of the array elements in the frequency domain to convert a repeating synthetic pulse signal to single highly interpolated pulse. This is then enhanced further using Richardson-Lucy deconvolution to greatly enhance the resolution of the pulse. We show the sampling resolution and pulse width can be enhanced by about two orders of magnitude using the signal processing algorithms presented, thus breaking the fundamental resolution limit for BPSK modulation of a particular bandwidth and bit rate. We demonstrate the usefulness of this technique for determining cloud and tree canopy thicknesses far beyond this fundamental limit in a lidar not designed for this purpose.


Optics Letters | 2014

High-resolution CW lidar altimetry using repeating intensity-modulated waveforms and Fourier transform reordering

Joel F. Campbell; Bing Lin; Amin R. Nehrir; F. Wallace Harrison; Michael D. Obland

An interpolation method is described for range measurements of high precision and altimetry using repeating intensity-modulated continuous wave (IM-CW) lidar waveforms, where the range is determined by means of a cross-correlation between the digital form of the transmitted signal and the digitized return signal collected by the lidar receiver. This method uses reordering of the array elements in the frequency domain to convert a repeating synthetic pulse signal to single highly interpolated pulse. The computation of this processing is marginally greater than the correlation itself, as it only involves reordering of the correlation in the frequency domain, which makes it possible to implement this in a real time application. It is shown through theoretical arguments and flight-testing that this is a viable method for high-speed interpolated range measurements. Standard deviation is 0.75 m over water with only 350 mw of transmitted power at 2600 m.


Optics Express | 2014

Binary phase shift keying on orthogonal carriers for multi-channel CO 2 absorption measurements in the presence of thin clouds

Joel F. Campbell; Bing Lin; Amin R. Nehrir; F. Wallace Harrison; Michael D. Obland

A new modulation technique for Continuous Wave (CW) Lidar is presented based on Binary Phase Shift Keying (BPSK) using orthogonal carriers closely spaced in frequency, modulated by Maximum Length (ML) sequences, which have a theoretical autocorrelation function with no sidelobes. This makes it possible to conduct multi-channel atmospheric differential absorption measurements in the presence of thin clouds without the need for further processing to remove errors caused by sidelobe interference while sharing the same modulation bandwidth. Flight tests were performed and data were collected using both BPSK and linear swept frequency modulation. This research shows there is minimal or no sidelobe interference in the presence of thin clouds for BPSK compared to linear swept frequency with significant sidelobe levels. Comparisons between of CO(2) optical depth Signal to Noise (SNR) between the BPSK and linear swept frequency cases indicate a 21% drop in SNR for BPSK experimentally using the instrument under consideration.


Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing XII | 2016

Optical depth distribution of optically thin clouds and surface elevation variability derived from CALIPSO lidar measurements (Conference Presentation)

Zhaoyan Liu; Bing Lin; Michael D. Obland; Joel F. Campbell

Atmospheric carbon dioxide (CO2) is one of the major greenhouse gases in the Earth’s climate system. The CO2 concentration in the atmosphere has been significantly increased over the last 150 years, due mainly to anthropogenic activities. Comprehensive measurements of global atmospheric CO2 distributions are urgently needed to develop a more complete understanding of CO2 sources and sinks. Because of the importance of the atmospheric CO2 measurements, satellite missions with passive sensors such as GOSAT and OCO-2 have been launched, and those with active sensors like Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) using an integrated path differential absorption (IPDA) lidar are being studied. The required accuracy and precision for the column-integrated CO2 mixing ratios (XCO2) is high, within 1.0 ppm or approximately 0.26%, which calls for unbiased CO2 measurements and accurate determinations of the path length. The presence of clouds and aerosols can make the measurement complicated, especially for passive instruments. The heterogeneity generated by the surface elevation changes within the field of view of the sensors and the grid boxes of averaged values of atmospheric CO2 would also cause significant uncertainties in XCO2 estimates if the path length is not accurately known. Thus, it is required to study the cloud and aerosol distributions as well as the surface elevation variability in assessing the performance of the CO2 measurements from both active and passive instruments. The CALIPSO lidar has acquired nearly 10 years of global measurement data. It provides a great opportunity to study the global distribution of clouds and aerosols as well as the statistics of the surface elevation variations. In this study we have analyzed multiple years of the CALIPSO Level 2 data to derive the global occurrence of aerosols and optically thin clouds. The results show that clear sky does not occur as frequently as expected. The global average occurrence is only about 8% for very clean air with columnar OD at 532 nm < 0.01. It increases to ~29% when OD < 0.1, and ~42% when OD < 0.3, which is close the clear atmospheric threshold from regular passive remote sensing instruments. This calls for a capability to make precise retrievals in the presence of relatively dense aerosols or thin clouds. Multiple years of surface elevation data derived from the CALIPSO lidar has also been used in the assessment of surface elevation variability for passive sensor observations. It is shown that the variability of the surface elevation generally increases with increases in footprint size and surface elevation. For a footprint of 1-2 km typical for passive sensors, the mean standard deviation is 5-10 meters when elevation < 1 km and can reach 100 meters as the elevation increases. The occurrence frequency for a standard deviation < 10 m is greater than 20%, which can cause significant biases in the CO2 retrieval if the presence of the cloud and/or aerosol cannot be identified and corrected. With ranging capability, the ASCENDS lidar system supported by NASA will reliably measure CO2 even in the presence of multiple backscatter targets (surface and transparent clouds) as shown during the experiments of recent airborne system demonstrations. However, it is very challenging for passive satellites to make reliable retrievals in the multiple-layer target case, because of the lack of path length information.


Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing XI | 2015

Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

Joel F. Campbell; Bing Lin; Amin R. Nehrir; F. Wallace Harrison; Michael D. Obland; Byron L. Meadows

Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.


conference on lasers and electro optics | 2014

Watt-level fluoride fiber lasers and amplifiers in the 1.2 μm region

Xiushan Zhu; Jie Zong; Kort Wiersma; Robert A. Norwood; Narasimha S. Prasad; Michael D. Obland; Arturo Chavez-Pirson; N. Peyghambarian

Holmium-doped ZBLAN fiber has proven to be an efficient high gain material in the 1.2 μm region. In this paper, single-mode fiber lasers and amplifiers at 1178 nm, 1190 nm, and 1200 nm are reported. Over 2 watts of continuous wave output power was achieved with a 10-cm long gain fiber.


Atmospheric Measurement Techniques | 2011

Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples

Sharon Burton; Richard A. Ferrare; Chris A. Hostetler; J. W. Hair; R. R. Rogers; Michael D. Obland; C. F. Butler; A. L. Cook; D. B. Harper; Karl D. Froyd


Atmospheric Chemistry and Physics | 2010

Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar

R. R. Rogers; Chris A. Hostetler; Johnathan W. Hair; Richard A. Ferrare; Zhaoyan Liu; Michael D. Obland; D. B. Harper; Anthony L. Cook; K. A. Powell; Mark A. Vaughan; David M. Winker

Collaboration


Dive into the Michael D. Obland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Hair

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. R. Rogers

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar

Bing Lin

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. B. Harper

Langley Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge