Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael D. Rowe is active.

Publication


Featured researches published by Michael D. Rowe.


IEEE Transactions on Signal Processing | 2006

Exploiting temperature dependency in the detection of NQR signals

Andreas Jakobsson; Magnus Mossberg; Michael D. Rowe; John A. S. Smith

Nuclear quadrupole resonance (NQR) offers an unequivocal method of detecting and identifying land mines. Unfortunately, the practical use of NQR is restricted by the low signal-to-noise ratio (SNR), and the means to improve the SNR are vital to enable a rapid, reliable, and convenient system. In this paper, an approximate maximum-likelihood detector (AML) is developed, exploiting the temperature dependency of the NQR frequencies as a way to enhance the SNR. Numerical evaluation using both simulated and real NQR data indicate a significant gain in probability of accurate detection as compared with the current state-of-the-art approach.


IEEE Transactions on Geoscience and Remote Sensing | 2005

Frequency-selective detection of nuclear quadrupole resonance signals

Andreas Jakobsson; Magnus Mossberg; Michael D. Rowe; John A. S. Smith

Nuclear quadrupole resonance (NQR) offers an unequivocal method of detecting and identifying both hidden explosives, such as land mines, and a variety of narcotics. Unfortunately, the practical use of NQR is restricted by a low signal-to-noise ratio (SNR), and means to improve the SNR are vital to enable a rapid, reliable, and convenient system. In this paper, we introduce a frequency-selective approximate maximum-likelihood (FSAML) detector, operating on a subset of the available frequencies, making it robust to the typically present narrow-band interference. The method exploits the inherent temperature dependency of the NQR frequencies as a way to enhance the SNR. Numerical evaluations, using both simulated and real NQR data, indicate a significant gain in probability of accurate detection as compared to a current state-of-the-art approach.


IEEE Transactions on Signal Processing | 2008

Robust Detection of Stochastic Nuclear Quadrupole Resonance Signals

Samuel Dilshan Somasundaram; Andreas Jakobsson; Michael D. Rowe; John A. S. Smith; Naveed R. Butt; Kaspar Althoefer

Nuclear quadrupole resonance (NQR) is a solid-state radio frequency (RF) spectroscopic technique, allowing the detection of compounds containing quadrupolar nuclei, a requirement fulfilled by many high explosives and narcotics. The practical use of NQR is restricted by the inherently low signal-to-noise ratio (SNR) of the observed signals, a problem that is further exacerbated by the presence of strong RF interference (RFI). The current literature focuses on the use of conventional, multiple-pulsed NQR (cNQR) to obtain signals. Here, we investigate an alternative method called stochastic NQR (sNQR), having many advantages over cNQR, one of which is the availability of signal-of-interest free samples. In this paper, we exploit these samples forming a matched subspace-type detector and a detector employing a prewhitening approach, both of which are able to efficiently reduce the influence of RFI. Further, many of the ideas already developed for cNQR, including providing robustness to uncertainties in the assumed complex amplitudes and exploiting the temperature dependencies of the NQR spectral components, are recast for sNQR. The presented detectors are evaluated on both simulated and measured trinitro-toluene (TNT) data.


Analytical Chemistry | 2013

Nitrogen-14 Nuclear Quadrupole Resonance Spectroscopy: A Promising Analytical Methodology for Medicines Authentication and Counterfeit Antimalarial Analysis

Jamie Barras; Darragh Murnane; Kaspar Althoefer; Sulaf Assi; Michael D. Rowe; Iain J. F. Poplett; Georgia Kyriakidou; John A. S. Smith

We report the detection and analysis of a suspected counterfeit sample of the antimalarial medicine Metakelfin through developing nitrogen-14 nuclear quadrupole resonance ((14)N NQR) spectroscopy at a quantitative level. The sensitivity of quadrupolar parameters to the solid-state chemical environment of the molecule enables development of a technique capable of discrimination between the same pharmaceutical preparations made by different manufacturers. The (14)N NQR signal returned by a tablet (or tablets) from a Metakelfin batch suspected to be counterfeit was compared with that acquired from a tablet(s) from a known-to-be-genuine batch from the same named manufacturer. Metakelfin contains two active pharmaceutical ingredients, sulfalene and pyrimethamine, and NQR analysis revealed spectral differences for the sulfalene component indicative of differences in the processing history of the two batches. Furthermore, the NQR analysis provided quantitative information that the suspected counterfeit tablets contained only 43 ± 3%, as much sulfalene as the genuine Metakelfin tablets. Conversely, conventional nondestructive analysis by Fourier transform (FT)-Raman and FT-near infrared (NIR) spectroscopies only achieved differentiation between batches but no ascription. High performance liquid chromatography (HPLC)-UV analysis of the suspect tablets revealed a sulfalene content of 42 ± 2% of the labeled claim. The degree of agreement shows the promise of NQR as a means of the nondestructive identification and content-indicating first-stage analysis of counterfeit pharmaceuticals.


Journal of Magnetic Resonance | 2010

Spectral estimation of irregularly sampled exponentially decaying signals with applications to RF spectroscopy

Erik Gudmundson; Petre Stoica; Jian Li; Andreas Jakobsson; Michael D. Rowe; John A. S. Smith; Jun Ling

The problem of estimating the spectral content of exponentially decaying signals from a set of irregularly sampled data is of considerable interest in several applications, for example in various forms of radio frequency spectroscopy. In this paper, we propose a new nonparametric iterative adaptive approach that provides a solution to this estimation problem. As opposed to commonly used methods in the field, the damping coefficient, or linewidth, is explicitly modeled, which allows for an improved estimation performance. Numerical examples using both simulated data and data from NQR experiments illustrate the benefits of the proposed estimator as compared to currently available nonparametric methods.


Journal of Magnetic Resonance | 2010

Magnetic field-cycling NMR and 14N, 17O quadrupole resonance in the explosive pentaerythritol tetranitrate (PETN)☆

John A. S. Smith; Tim Rayner; Michael D. Rowe; Jamie Barras; Neil Francis Peirson; Andrew D. Stevens; Kaspar Althoefer

The explosive pentaerythritol tetranitrate (PETN) C(CH(2)-O-NO(2))(4) has been studied by (1)H NMR and (14)N NQR. The (14)N NQR frequency and spin-lattice relaxation time T(1Q) for the nu(+) line have been measured at temperatures from 255 to 325K. The (1)H NMR spin-lattice relaxation time T(1) has been measured at frequencies from 1.8kHz to 40MHz and at temperatures from 250 to 390K. The observed variations are interpreted as due to hindered rotation of the NO(2) group about the bond to the oxygen atom of the CH(2)-O group, which produces a transient change in the dipolar coupling of the CH(2) protons, generating a step in the (1)H T(1) at frequencies between 2 and 100kHz. The same mechanism could also explain the two minima observed in the temperature variation of the (14)N NQR T(1Q) near 284 and 316K, due in this case to the transient change in the (14)N...(1)H dipolar interaction, the first attributed to hindered rotation of the NO(2) group and the second to an increase in torsional amplitude of the NO(2) group due to molecular distortion of the flexible CH(2)-O-NO(2) chain which produces a 15% increase in the oscillational amplitude of the CH(2) group. The correlation times governing the (1)H T(1) values are approximately 25 times longer than those governing the (14)N NQR T(1Q), explained by the slow spin-lattice cross-coupling between the two spin systems. At higher frequencies, the (1)H T(1) dispersion results show well-resolved dips between 200 and 904kHz assigned to level crossing with (14)N and weaker features between 3 and 5MHz tentatively assigned to level crossing with (17)O.


international conference on multimedia information networking and security | 2004

An NQR study of the crystalline structure of TNT

Robert M. Deas; Michael J. Gaskell; Kathryn Long; Neil Francis Peirson; Michael D. Rowe; John A. S. Smith

A comparison of the NQR parameters of the monoclinic and orthorhombic phases of TNT and their relation to the twist or dihedral angle between the plane of the NO2 substituents and that of the benzene ring as determined in the X-Ray crystal structure analysis enables an assignment of different frequencies to specific sites in the two independent molecules in the unit cell of both forms to be made. The slow transformation of the metastable orthorhombic phase to monoclinic can then be followed by monitoring the NQR spectrum in which specific lines can be assigned to molecular sites in the two phases. NQR spectra of TNT referred to in the literature often differ; this could be due partly to the TNT often being a mixture of monoclinic and orthorhombic phases and partly to changes in the spectral line width, factors which must be taken into account when NQR is used to detect landmines.


Journal of Magnetic Resonance | 2011

14N quadrupole resonance and 1H T1 dispersion in the explosive RDX

John A. S. Smith; Martin Blanz; Tim Rayner; Michael D. Rowe; Simon Bedford; Kaspar Althoefer

The explosive hexahydro-1,3,5-trinitro-s-triazine (CH2-N-NO2)3, commonly known as RDX, has been studied by 14N NQR and 1H NMR. NQR frequencies and relaxation times for the three ν+ and ν- lines of the ring 14N nuclei have been measured over the temperature range 230-330 K. The 1H NMR T1 dispersion has been measured for magnetic fields corresponding to the 1H NMR frequency range of 0-5.4 M Hz. The results have been interpreted as due to hindered rotation of the NO2 group about the N-NO2 bond with an activation energy close to 92 kJ mol(-1). Three dips in the 1H NMR dispersion near 120, 390 and 510 kHz are assigned to the ν0, ν- and ν+ transitions of the 14NO2 group. The temperature dependence of the inverse line-width parameters T2∗ of the three ν+ and ν- ring nitrogen transitions between 230 and 320 K can be explained by a distribution in the torsional oscillational amplitudes of the NO2 group about the N-NO2 bond at crystal defects whose values are consistent with the latter being mainly edge dislocations or impurities in the samples studied. Above 310 K, the 14N line widths are dominated by the rapid decrease in the spin-spin relaxation time T2 due to hindered rotation of the NO2 group. A consequence of this is that above this temperature, the 1H T1 values at the quadrupole dips are dominated by the spin mixing time between the 1H Zeeman levels and the combined 1H and 14N spin-spin levels.


Analytical Chemistry | 2009

Quantitative 35Cl nuclear quadrupole resonance in tablets of the antidiabetic medicine Diabinese.

Elizabeth Tate; Kaspar Althoefer; Jamie Barras; Michael D. Rowe; John A. S. Smith; Gareth E. S. Pearce; Stephen A.C. Wren

Pulsed (35)Cl nuclear quadrupole resonance (NQR) experiments have been performed on 250-mg tablets of the antidiabetic medicine Diabinese to establish the conditions needed for noninvasive quantitative analysis of the medicine in standard bottles. One important condition is the generation of a uniform radio-frequency (RF) field over the sample, which has been achieved by two designs of sample coil: one of variable pitch, and the other a resonator that has been fabricated from a single turn of copper sheet with a longitudinal gap bridged by tuning capacitors. The results from blind tests show that the number of tablets in a bottle could be predicted to within +/-3%.


Analytical Chemistry | 2012

Variable-pitch rectangular cross-section radiofrequency coils for the nitrogen-14 nuclear quadrupole resonance investigation of sealed medicines packets.

Jamie Barras; Shota Katsura; Hideo Sato-Akaba; Hideo Itozaki; Georgia Kyriakidou; Michael D. Rowe; Kaspar Althoefer; John A. S. Smith

The performance of rectangular radio frequency (RF) coils capable of being used to detect nuclear quadrupole resonance (NQR) signals from blister packs of medicines has been compared. The performance of a fixed-pitch RF coil was compared with that from two variable-pitch coils, one based on a design in the literature and the other optimized to obtain the most homogeneous RF field over the whole volume of the coil. It has been shown from 14N NQR measurements with two medicines, the antibiotic ampicillin (as trihydrate) and the analgesic medicine Paracetamol, that the latter design gives NQR signal intensities almost independent of the distribution of the capsules or pills within the RF coil and is therefore more suitable for quantitative analysis.

Collaboration


Dive into the Michael D. Rowe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaspar Althoefer

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge