Michael D. Steury
Michigan State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael D. Steury.
International Immunopharmacology | 2015
Haritha Durairaj; Michael D. Steury; Narayanan Parameswaran
Paroxetine is a selective serotonin reuptake inhibitor (SSRI) that is clinically used for the treatment of depression in human patients. Because of recent reports on the role of serotonin in modulating inflammation and the link between inflammation and depression, we sought to test the effect of paroxetine directly on macrophage response to an inflammatory stimulus. Lipopolysaccharide (LPS) treatment of mouse macrophages significantly enhanced TNFα and IL-6 production. Paroxetine treatment of macrophages, however, significantly inhibited LPS-induced IL-6 production. In contrast, paroxetine enhanced LPS-induced TNFα production in macrophages. These effects of paroxetine were mimicked by fluoxetine, another SSRI. To determine if the effects of paroxetine are mediated via modulation of the 5-HT system, we treated macrophages with 5-HT or 5-HT receptor antagonist (LY215840) in the presence of LPS and/or paroxetine. 5-HT treatment by itself did not affect LPS-induced cytokine production. LY215840, however, reversed paroxetines effect on LPS-induced TNFα production but not IL-6. To understand the signaling mechanisms, we examined paroxetines effect on MAPK and NFκB pathways. While paroxetine inhibited LPS-induced IκBα phosphorylation, MAPK pathways were mostly unaffected. Together these data demonstrate that paroxetine has critical but differential effects on IL-6 and TNFα production in macrophages and that it likely regulates these cytokines via distinct mechanisms.
Advances in Physiology Education | 2015
Michael D. Steury; James M. Poteracki; Kevin L. Kelly; Erica A. Wehrwein
in the last several decades, there has been a shift in the mindset of research structure from classical “systems or integrative biology” to more molecular focused “-omics” study. Systems biology is characterized as an approach to cells, tissues, or organs that “put the pieces together”
Archive | 2017
Fraser L. Collins; Jonathan D. Schepper; Naiomy Deliz Rios-Arce; Michael D. Steury; Ho Jun Kang; Heather Mallin; Daniel Schoenherr; Glen Camfield; Saima Chishti; Laura R. McCabe; Narayanan Parameswaran
In recent years a link between the gastrointestinal tract and bone health has started to gain significant attention. Dysbiosis of the intestinal microbiota has been linked to the pathology of a number of diseases which are associated with bone loss. In addition modulation of the intestinal microbiota with probiotic bacteria has revealed to have both beneficial local and systemic effects. In the present chapter, we discuss the intestinal and bone immune systems, explore how intestinal disease affects the immune system, and examine how these pathologic changes could adversely impact bone health.
Infection and Immunity | 2016
Nandakumar Packiriswamy; Michael D. Steury; Ian C. McCabe; Scott D. Fitzgerald; Narayanan Parameswaran
ABSTRACT G protein-coupled receptor kinase 5 (GRK5) is a serine/threonine kinase previously shown to mediate polymicrobial sepsis-induced inflammation. The goal of the present study was to examine the role of GRK5 in monomicrobial pulmonary infection by using an intratracheal Escherichia coli infection model of pneumonia. We used sublethal and lethal doses of E. coli to examine the mechanistic differences between low-grade and high-grade inflammation induced by E. coli infection. With a sublethal dose of E. coli, GRK5 knockout (KO) mice exhibited higher plasma CXCL1/KC levels and enhanced lung neutrophil recruitment early after infection, and lower bacterial loads, than wild-type (WT) mice. The inflammatory response was also diminished, and resolution of inflammation advanced, in the lungs of GRK5 KO mice. In contrast to the reduced bacterial loads in GRK5 KO mice following a sublethal dose, at a lethal dose of E. coli, the bacterial burdens remained high in GRK5 KO mice relative to those in WT mice. This occurred in spite of enhanced plasma CXCL1 levels as well as neutrophil recruitment in the KO mice. But the recruited neutrophils (following high-dose infection) exhibited decreased CD11b expression and reduced reactive oxygen species production, suggesting decreased neutrophil activation or increased neutrophil exhaustion in the GRK5 KO mice. In agreement with the increased bacterial burden, KO mice showed poorer survival than WT mice following E. coli infection at a lethal dose. Overall, our data suggest that GRK5 negatively regulates CXCL1/KC levels during bacterial pneumonia but that the role of GRK5 in the clinical outcome in this model is dependent on the bacterial dose.
Advances in Experimental Medicine and Biology | 2017
Naiomy Deliz Rios-Arce; Fraser L. Collins; Jonathan D. Schepper; Michael D. Steury; Sandi Raehtz; Heather Mallin; Danny T. Schoenherr; Narayanan Parameswaran; Laura R. McCabe
The intestinal epithelial barrier plays an essential role in maintaining host homeostasis. The barrier regulates nutrient absorption as well as prevents the invasion of pathogenic bacteria in the host. It is composed of epithelial cells, tight junctions, and a mucus layer. Several factors, such as cytokines, diet, and diseases, can affect this barrier. These factors have been shown to increase intestinal permeability, inflammation, and translocation of pathogenic bacteria. In addition, dysregulation of the epithelial barrier can result in inflammatory diseases such as inflammatory bowel disease. Our lab and others have also shown that barrier disruption can have systemic effects including bone loss. In this chapter, we will discuss the current literature to understand the link between intestinal barrier and bone. We will discuss how inflammation, aging, dysbiosis, and metabolic diseases can affect intestinal barrier-bone link. In addition, we will highlight the current suggested mechanism between intestinal barrier and bone.
Advances in Physiology Education | 2016
Michael D. Steury; James M. Poteracki; Kevin L. Kelly; Jonathan Rennhack; Erica A. Wehrwein
there are four distinct styles of laboratory education, as outlined in Domins A Review of Laboratory Instruction Styles ([4][1]), which are specifically as follows: expository, inquiry, discovery, and problem based. Each of these styles has their own collection of pros and cons, but all try to
Inflammation | 2018
Deepika Sharma; Ankit Malik; Nandakumar Packiriswamy; Michael D. Steury; Narayanan Parameswaran
Sepsis continues to be a major healthcare issue with one of the highest mortality rates in intensive care units. Toll-like receptors are pattern recognition receptors that are intricately involved in the pathogenesis of sepsis. TLR3 is a major receptor for double-stranded RNA and is largely associated with immunity to viral infection. In this study, we examined the role of TLR3 priming in the immunopathology of sepsis using cecal-ligation and puncture (CLP) model of sepsis in mice. Mice injected with vehicle or poly(I:C) were subjected to sham or CLP surgery and various parameters of sepsis, including mortality, inflammation, and bacterial clearance were assessed. Poly(I:C) pre-treatment significantly enhanced mortality in mice subjected to CLP. Consistent with this, inflammatory cytokines including TNFα, IL-12p40, IFNγ, and MCP-1 were enhanced both systemically and locally in the poly(I:C)-treated group compared to the vehicle control. In addition, bacterial load was significantly higher in the poly(I:C)-treated septic mice. These changes were associated with reduced macrophage activation (but not neutrophils) in the peritoneal cavity of poly(I:C) pre-treated mice compared to vehicle pre-treatment. Together our results demonstrate that poly(I:C) priming in sepsis is likely to be detrimental to the host due to effects on systemic inflammatory cytokines and bacterial clearance.
Biochemical Journal | 2017
Michael D. Steury; Peter C. Lucas; Laura R. McCabe; Narayanan Parameswaran
G-protein-coupled receptor kinase-2 (GRK2) belongs to the GRK family of serine/threonine protein kinases critical in the regulation of G-protein-coupled receptors. Apart from this canonical role, GRK2 is also involved in several signaling pathways via distinct intracellular interactomes. In the present study, we examined the role of GRK2 in TNFα signaling in colon epithelial cell-biological processes including wound healing, proliferation, apoptosis, and gene expression. Knockdown of GRK2 in the SW480 human colonic cells significantly enhanced TNFα-induced epithelial cell wound healing without any effect on apoptosis/proliferation. Consistent with wound-healing effects, GRK2 knockdown augmented TNFα-induced matrix metalloproteinases (MMPs) 7 and 9, as well as urokinase plasminogen activator (uPA; factors involved in cell migration and wound healing). To assess the mechanism by which GRK2 affects these physiological processes, we examined the role of GRK2 in TNFα-induced MAPK and NF-κB pathways. Our results demonstrate that while GRK2 knockdown inhibited TNFα-induced IκBα phosphorylation, activation of ERK was significantly enhanced in GRK2 knockdown cells. Our results further demonstrate that GRK2 inhibits TNFα-induced ERK activation by inhibiting generation of reactive oxygen species (ROS). Together, these data suggest that GRK2 plays a critical role in TNFα-induced wound healing by modulating MMP7 and 9 and uPA levels via the ROS-ERK pathway. Consistent with in vitro findings, GRK2 heterozygous mice exhibited enhanced intestinal wound healing. Together, our results identify a novel role for GRK2 in TNFα signaling in intestinal epithelial cells.
Advances in Immunology | 2017
Michael D. Steury; Laura R. McCabe; Narayanan Parameswaran
G protein-coupled receptor kinases (GRKs) are serine/threonine kinases that regulate a large and diverse class of G protein-coupled receptors (GPCRs). Through GRK phosphorylation and β-arrestin recruitment, GPCRs are desensitized and their signal terminated. Recent work on these kinases has expanded their role from canonical GPCR regulation to include noncanonical regulation of non-GPCR and nonreceptor substrates through phosphorylation as well as via scaffolding functions. Owing to these and other regulatory roles, GRKs have been shown to play a critical role in the outcome of a variety of physiological and pathophysiological processes including chemotaxis, signaling, migration, inflammatory gene expression, etc. This diverse set of functions for these proteins makes them popular targets for therapeutics. Role for these kinases in inflammation and inflammatory disease is an evolving area of research currently pursued in many laboratories. In this review, we describe the current state of knowledge on various GRKs pertaining to their role in inflammation and inflammatory diseases.
Advances in Physiology Education | 2015
Kevin L. Kelly; James M. Poteracki; Michael D. Steury; Erica A. Wehrwein
many physiology laboratory courses are focused around observable phenomena in the human body, specifically those that are well known. It is commonly observed that once these laboratory exercises are established, these laboratories do not typically change from semester to semester. This style of