Michael D. Weber
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael D. Weber.
Psychoneuroendocrinology | 2014
Matthew G. Frank; Sarah A. Hershman; Michael D. Weber; Linda R. Watkins; Steven F. Maier
Chronic stress as well as chronic treatment with glucocorticoids (GCs) primes the neuroinflammatory response to a subsequent pro-inflammatory challenge. However, it remains unclear whether chronic GCs sensitize the response of key CNS immune substrates (i.e. microglia) to pro-inflammatory stimuli. In the present set of studies, male Sprague-Dawley rats underwent sham surgery or were adrenalectomized and then treated with varying concentrations of corticosterone (CORT; 0, 25, 50, and 75 μg/ml) administered in their drinking water. After 10 days of CORT exposure, whole hippocampus was collected and expression of glial activation markers measured or hippocampal microglia were isolated and challenged with LPS to probe for CORT-induced sensitization of pro-inflammatory responses. Chronic CORT exposure increased the gene expression of NLRP3, Iba-1, MHCII, and NF-κBIα in a concentration dependent manner. Chronic CORT (75 μg/ml) exposure potentiated the microglial proinflammatory response (TNFα, IL-1β, IL-6 and NLRP3) to LPS compared to the microglial response of sham surgery animals treated with vehicle. The present set of results demonstrate that chronic exposure to GCs primes microglia to pro-inflammatory stimuli and add to a growing body of evidence suggesting that a permissive function of GCs is that of an endogenous danger signal or alarmin.
Brain Behavior and Immunity | 2015
Matthew G. Frank; Michael D. Weber; Linda R. Watkins; Steven F. Maier
High mobility group box-1 (HMGB1) is an endogenous danger signal or alarmin that mediates activation of the innate immune response including chemotaxis and pro-inflammatory cytokine release. HMGB1 has been implicated in the pathophysiology of several neuroinflammatory conditions including ischemia, traumatic brain injury, seizure and chronic ethanol use. In the present review, the unique structural and functional properties of HMGB1 will be explored including its affinity for multiple pattern recognition receptors (TLR2/TLR4), redox sensitivity and adjuvant-like properties. In light of recent evidence suggesting that HMGB1 may also mediate stress-induced sensitization of neuroinflammatory responses, mechanisms of HMGB1 action in neuroinflammatory priming are explored. A model of neuroinflammatory priming is developed wherein glucocorticoids induce synthesis and release of HMGB1 from microglia, which signals through TLR2/TLR4, thereby priming the NLRP3 inflammasome. We propose that if GCs reach a critical threshold as during a fight/flight response, they may thus function as an alarmin by inducing HMGB1, thereby preparing an organisms innate immune system (NLRP3 inflammasome priming) for subsequent immune challenges such as injury, trauma or infection, which are more likely to occur during a fight/flight response. In doing so, GCs may confer a significant survival advantage by enhancing the central innate immune and sickness response to immune challenges.
Brain Behavior and Immunity | 2013
Michael D. Weber; Matthew G. Frank; Julia L. Sobesky; Linda R. Watkins; Steven F. Maier
Acute and chronic stressors sensitize or prime the neuroinflammatory response to a subsequent peripheral or central immunologic challenge. However, the neuroimmune process(es) by which stressors prime or sensitize subsequent neuroinflammatory responses remains unclear. Prior evidence suggested that toll-like receptors (TLRs) might be involved in the mediation of primed neuroinflammatory responses, but the role of TLRs during a stressor has never been directly tested. Here, a novel TLR2 and TLR4 antagonist, OxPAPC, was used to probe the contribution of TLRs in the stress sensitization phenomenon. OxPAPC has not previously been administered to the brain, and so its action in blocking TLR2 and TLR4 action in brain was first verified. Administration of OxPAPC into the CNS prior to stress prevented the stress-induced potentiation of hippocampal pro-inflammatory response to a subsequent peripheral LPS challenge occurring 24 h later. In addition, in vivo administration of OxPAPC prior to stress prevented the sensitized pro-inflammatory response from isolated microglia following administration of LPS ex vivo, further implicating microglia as a key neuroimmune substrate that mediates stress-induced sensitized neuroinflammation.
Brain Behavior and Immunity | 2016
Matthew G. Frank; Michael D. Weber; Sarah A. Hershman; Linda R. Watkins; Steven F. Maier
The alarmin high mobility group box-1 (HMGB1) has been implicated as a key factor mediating neuroinflammatory processes. Recent findings suggest that the redox state of HMGB1 is a critical molecular feature of HMGB1 such that the reduced form (fr-HMGB1) is chemotactic, while the disulfide form (ds-HMGB1) is pro-inflammatory. The present study examined the neuroinflammatory effects of these molecular forms as well as the ability of these forms to prime the neuroinflammatory and microglial response to an immune challenge. To examine the neuroinflammatory effects of these molecular forms in vivo, animals were administered intra-cisterna magna (ICM) a single dose of fr-HMGB1 (10μg), ds-HMGB1 (10μg) or vehicle and basal pro-inflammatory effects were measured 2 and 24h post-injection in hippocampus. Results of this initial experiment demonstrated that ds-HMGB1 increased hippocampal pro-inflammatory mediators at 2h (NF-κBIα mRNA, NLRP3 mRNA and IL-1β protein) and 24h (NF-κBIα mRNA, TNFα mRNA, and NLRP3 protein) after injection. fr-HMGB1 had no effect on these mediators. These neuroinflammatory effects of ds-HMGB1 suggested that ds-HMGB1 may function to prime the neuroinflammatory response to a subsequent immune challenge. To assess the neuroinflammatory priming effects of these molecular forms, animals were administered ICM a single dose of fr-HMGB1 (10μg), ds-HMGB1 (10μg) or vehicle and 24h after injection, animals were challenged with LPS (10μg/kg IP) or vehicle. Neuroinflammatory mediators and the sickness response (3, 8 and 24h after injection) were measured 2h after immune challenge. We found that ds-HMGB1 potentiated the neuroinflammatory (NF-κBIα mRNA, TNFα mRNA, IL-1β mRNA, IL-6 mRNA, NLRP3 mRNA and IL-1β protein) and sickness response (reduced social exploration) to LPS challenge. fr-HMGB1 failed to potentiate the neuroinflammatory response to LPS. To examine whether these molecular forms of HMGB1 directly induce neuroinflammatory effects in isolated microglia, whole brain microglia were isolated and treated with fr-HMGB1 (0, 1, 10, 100, or 1000ng/ml) or ds-HMGB1 (0, 1, 10, 100, or 1000ng/ml) for 4h and pro-inflammatory mediators measured. To assess the effects of these molecular forms on microglia priming, whole brain microglia were pre-exposed to these forms of HMGB1 (0, 1, 10, 100, or 1000ng/ml) and subsequently challenged with LPS (10ng/ml). We found that ds-HMGB1 increased expression of NF-κBIα mRNA and NLRP3 mRNA in isolated microglia, and potentiated the microglial pro-inflammatory response (TNFα mRNA, IL-1β mRNA and IL-1β protein) to LPS. fr-HMGB1 failed to potentiate the microglial pro-inflammatory response to LPS. Consistent with prior reports, the present findings demonstrate that the disulfide form of HMGB1 not only potentiates the neuroinflammatory response to a subsequent immune challenge in vivo, but also potentiates the sickness response to that challenge. Moreover, the present findings demonstrate for the first time that ds-HMGB1 directly potentiates the microglia pro-inflammatory response to an immune challenge, a finding that parallels the effects of ds-HMGB1 in vivo. In addition, ds-HMGB1 induced expression of NLRP3 and NF-κBIα in vivo and in vitro suggesting that the NLRP3 inflammasome may play role in the priming effects of ds-HMGB1. Taken together, the present results suggest that the redox state of HMGB1 is a critical determinant of the priming properties of HMGB1 such that the disulfide form of HMGB1 induces a primed immunophenotype in the CNS, which may result in an exacerbated neuroinflammatory response upon exposure to a subsequent pro-inflammatory stimulus.
Neuropsychopharmacology | 2017
Michael D. Weber; Jonathan P. Godbout; John F. Sheridan
Mounting evidence indicates that proinflammatory signaling in the brain affects mood, cognition, and behavior and is linked with the etiology of psychiatric disorders, including anxiety and depression. The purpose of this review is to focus on stress-induced bidirectional communication pathways between the central nervous system (CNS) and peripheral immune system that converge to promote a heightened neuroinflammatory environment. These communication pathways involve sympathetic outflow from the brain to the peripheral immune system that biases hematopoietic stem cells to differentiate into a glucocorticoid-resistant and primed myeloid lineage immune cell. In conjunction, microglia-dependent neuroinflammatory events promote myeloid cell trafficking to the brain that reinforces stress-related behavior, and is argued to play a role in stress-related psychiatric disorders. We will discuss evidence implicating a key role for endothelial cells that comprise the blood–brain barrier in propagating peripheral-to-central immune communication. We will also discuss novel neuron-to-glia communication pathways involving endogenous danger signals that have recently been argued to facilitate neuroinflammation under various conditions, including stress. These findings help elucidate the complex communication that occurs in response to stress and highlight novel therapeutic targets against the development of stress-related psychiatric disorders.
The Journal of Neuroscience | 2016
Matthew G. Frank; Meagan M. Kitt; Heather M. D'Angelo; Diana M. Norden; Michael D. Weber; Ruth M. Barrientos; Jonathan P. Godbout; Linda R. Watkins; Steven F. Maier
Amplified neuroinflammatory responses following an immune challenge occur with normal aging and can elicit or exacerbate neuropathology. The mechanisms mediating this sensitized or “primed” immune response in the aged brain are not fully understood. The alarmin high mobility group box 1 (HMGB1) can be released under chronic pathological conditions and initiate inflammatory cascades. This led us to investigate whether HMGB1 regulates age-related priming of the neuroinflammatory response. Here, we show that HMGB1 protein and mRNA were elevated in the hippocampus of unmanipulated aged rats (24-month-old F344XBN rats). Furthermore, aged rats had increased HMGB1 in the CSF, suggesting increased HMGB1 release. We demonstrate that blocking HMGB1 signaling with an intracisterna magna (ICM) injection of the competitive antagonist to HMGB1, Box-A, downregulates basal expression of several inflammatory pathway genes in the hippocampus of aged rats. This indicates that blocking the actions of HMGB1 might reduce age-associated inflammatory priming. To test this hypothesis, we evaluated whether HMGB1 antagonism blocks the protracted neuroinflammatory and sickness response to peripheral Escherichia coli (E. coli) infection in aged rats. ICM pretreatment of aged rats with Box-A 24 h before E. coli infection prevented the extended hippocampal cytokine response and associated cognitive and affective behavioral changes. ICM pretreatment with Box-A also inhibited aging-induced potentiation of the microglial proinflammatory response to lipopolysaccharide ex vivo. Together, these results suggest that HMGB1 mediates neuroinflammatory priming in the aged brain. Blocking the actions of HMGB1 appears to “desensitize” aged microglia to an immune challenge, thereby preventing exaggerated behavioral and neuroinflammatory responses following infection. SIGNIFICANCE STATEMENT The worlds population is aging, highlighting a need to develop treatments that promote quality of life in aged individuals. Normal aging is associated with precipitous drops in cognition, typically following events that induce peripheral inflammation (e.g., infection, surgery, heart attack). Peripheral immune stimuli cause exaggerated immune responses in the aged brain, which likely underlie these behavioral deficits. Here, we investigated whether the alarmin high mobility group box 1 (HMGB1) mediates age-associated “priming” of the neuroinflammatory response. HMGB1 is elevated in aged rodent brain and CSF. Blocking HMGB1 signaling downregulated expression of inflammatory pathway genes in aged rat brain. Further, HMGB1 antagonism prevented prolonged infection-induced neuroinflammatory and sickness responses in aged rats. Overall, blocking HMGB1 “desensitized” microglia in the aged brain, thereby preventing pathological infection-elicited neuroinflammatory responses.
Neurobiology of Stress | 2016
Matthew G. Frank; Michael D. Weber; Linda R. Watkins; Steven F. Maier
Stress and glucocorticoids (GCs) have universally been considered to be anti-inflammatory, however in recent years, stress and GCs have been found to exert permissive effects (immunological priming) on neuroinflammatory processes. This phenomenon of priming is characterized by prior stress or GC exposure potentiating the neuroinflammatory response to a subsequent immune challenge. A considerable body of evidence is discussed here that supports this permissive effect of stress and GCs. In light of this evidence, a mechanism of neuroinflammatory priming is proposed involving a signal cascade in the brain involving danger-associated molecular patterns (HMGB-1) and inflammasomes (NLRP3), which results in an exaggerated or amplified neuroinflammatory response and subsequently, the amplification of the physiological and behavioral sequelae of this response (i.e. sickness). Finally, we explore the notion that stressor-induced sensitization of the neuroimmune microenvironment may predispose individuals to psychiatric disorders, in which exaggerated innate immune/inflammatory responses in the brain are now thought to play a key role.
Biological Psychiatry | 2016
Michael V. Baratta; Suhasa B. Kodandaramaiah; Patrick E. Monahan; Junmei Yao; Michael D. Weber; Pei Ann Lin; Barbara Gisabella; Natalie Petrossian; Jose Amat; Kyungman Kim; Aimei Yang; Craig R. Forest; Edward S. Boyden; Ki Ann Goosens
BACKGROUND Prior exposure to stress is a risk factor for developing posttraumatic stress disorder (PTSD) in response to trauma, yet the mechanisms by which this occurs are unclear. Using a rodent model of stress-based susceptibility to PTSD, we investigated the role of serotonin in this phenomenon. METHODS Adult mice were exposed to repeated immobilization stress or handling, and the role of serotonin in subsequent fear learning was assessed using pharmacologic manipulation and western blot detection of serotonin receptors, measurements of serotonin, high-speed optogenetic silencing, and behavior. RESULTS Both dorsal raphe serotonergic activity during aversive reinforcement and amygdala serotonin 2C receptor (5-HT2CR) activity during memory consolidation were necessary for stress enhancement of fear memory, but neither process affected fear memory in unstressed mice. Additionally, prior stress increased amygdala sensitivity to serotonin by promoting surface expression of 5-HT2CR without affecting tissue levels of serotonin in the amygdala. We also showed that the serotonin that drives stress enhancement of associative cued fear memory can arise from paired or unpaired footshock, an effect not predicted by theoretical models of associative learning. CONCLUSIONS Stress bolsters the consequences of aversive reinforcement, not by simply enhancing the neurobiological signals used to encode fear in unstressed animals, but rather by engaging distinct mechanistic pathways. These results reveal that predictions from classical associative learning models do not always hold for stressed animals and suggest that 5-HT2CR blockade may represent a promising therapeutic target for psychiatric disorders characterized by excessive fear responses such as that observed in PTSD.
Brain Behavior and Immunity | 2016
Matthew G. Frank; Sweta Adhikary; Julia L. Sobesky; Michael D. Weber; Linda R. Watkins; Steven F. Maier
Methamphetamine (METH) induces neuroinflammatory effects, which may contribute to the neurotoxicity of METH. However, the mechanism by which METH induces neuroinflammation has yet to be clarified. A considerable body of evidence suggests that METH induces cellular damage and distress, particularly in dopaminergic neurons. Damaged neurons release danger-associated molecular patterns (DAMPs) such as high mobility group box-1 (HMGB1), which induces pro-inflammatory effects. Therefore, we explored the notion here that METH induces neuroinflammation indirectly through the release of HMGB1 from damaged neurons. Adult male Sprague-Dawley rats were injected IP with METH (10mg/kg) or vehicle (0.9% saline). Neuroinflammatory effects of METH were measured in nucleus accumbens (NAcc), ventral tegmental area (VTA) and prefrontal cortex (PFC) at 2h, 4h and 6h after injection. To assess whether METH directly induces pro-inflammatory effects in microglia, whole brain or striatal microglia were isolated using a Percoll density gradient and exposed to METH (0, 0.1, 1, 10, 100, or 1000μM) for 24h and pro-inflammatory cytokines measured. The effect of METH on HMGB1 and IL-1β in striatal tissue was then measured. To determine the role of HMGB1 in the neuroinflammatory effects of METH, animals were injected intra-cisterna magna with the HMGB1 antagonist box A (10μg) or vehicle (sterile water). 24h post-injection, animals were injected IP with METH (10mg/kg) or vehicle (0.9% saline) and 4h later neuroinflammatory effects measured in NAcc, VTA, and PFC. METH induced robust pro-inflammatory effects in NAcc, VTA, and PFC as a function of time and pro-inflammatory analyte measured. In particular, METH induced profound effects on IL-1β in NAcc (2h) and PFC (2h and 4h). Exposure of microglia to METH in vitro failed to induce a pro-inflammatory response, but rather induced significant cell death as well as a decrease in IL-1β. METH treatment increased HMGB1 in parallel with IL-1β in striatum. Pre-treatment with the HMGB1 antagonist box A blocked the neuroinflammatory effects (IL-1β) of METH in NAcc, VTA and PFC. The present results suggest that HMGB1 mediates, in part, the neuroinflammatory effects of METH and thus may alert CNS innate immune cells to the toxic effects of METH.
eNeuro | 2016
Julia L. Sobesky; Heather M. D'Angelo; Michael D. Weber; Nathan D. Anderson; Matthew G. Frank; Linda R. Watkins; S.F. Maier; Ruth M. Barrientos
Abstract The impact of the foods we eat on metabolism and cardiac physiology has been studied for decades, yet less is known about the effects of foods on the CNS, or the behavioral manifestations that may result from these effects. Previous studies have shown that long-term consumption of high-fat foods leading to diet-induced obesity sensitizes the inflammatory response of the brain to subsequent challenging stimuli, causing deficits in the formation of long-term memories. The new findings reported here demonstrate that short-term consumption of a high-fat diet (HFD) produces the same outcomes, thus allowing the examination of mechanisms involved in this process long before obesity and associated comorbidities occur. Rats fed an HFD for 3 d exhibited increases in corticosterone, the inflammasome-associated protein NLRP3 (nod-like receptor protein 3), and the endogenous danger signal HMGB1 (high-mobility group box 1) in the hippocampus. A low-dose (10 μg/kg) lipopolysaccharide (LPS) immune challenge potentiated the neuroinflammatory response in the hippocampus of rats fed the HFD, and caused a deficit in the formation of long-term memory, effects not observed in rats fed regular chow. The blockade of corticosterone action with the glucocorticoid receptor antagonist mifepristone prevented the NLRP3 and HMGB1 increases in unchallenged animals, normalized the proinflammatory response to LPS, and prevented the memory impairment. These data suggest that short-term HFD consumption increases vulnerability to memory disruptions caused by an immune challenge by upregulating important neuroinflammatory priming and danger signals in the hippocampus, and that these effects are mediated by increases in hippocampal corticosterone.