Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael D. Wong is active.

Publication


Featured researches published by Michael D. Wong.


Nature | 2016

High-throughput discovery of novel developmental phenotypes.

Mary E. Dickinson; Ann M. Flenniken; Xiao Ji; Lydia Teboul; Michael D. Wong; Jacqueline K. White; Terrence F. Meehan; Wolfgang J. Weninger; Henrik Westerberg; Hibret Adissu; Candice N. Baker; Lynette Bower; James Brown; L. Brianna Caddle; Francesco Chiani; Dave Clary; James Cleak; Mark J. Daly; James M. Denegre; Brendan Doe; Mary E. Dolan; Sarah M. Edie; Helmut Fuchs; Valérie Gailus-Durner; Antonella Galli; Alessia Gambadoro; Juan Gallegos; Shiying Guo; Neil R. Horner; Chih-Wei Hsu

Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.


Development | 2012

A novel 3D mouse embryo atlas based on micro-CT.

Michael D. Wong; Adrienne E. Dorr; Johnathon R. Walls; Jason P. Lerch; R. Mark Henkelman

The goal of the International Mouse Phenotyping Consortium (IMPC) is to phenotype targeted knockout mouse strains throughout the whole mouse genome (23,000 genes) by 2021. A significant percentage of the generated mice will be embryonic lethal; therefore, phenotyping methods tuned to the mouse embryo are needed. Methods that are robust, quantitative, automated and high-throughput are attractive owing to the numbers of mice involved. Three-dimensional (3D) imaging is a useful method for characterizing morphological phenotypes. However, tools to automatically quantify morphological information of mouse embryos from 3D imaging have not been fully developed. We present a representative mouse embryo average 3D atlas comprising micro-CT images of 35 individual C57BL/6J mouse embryos at 15.5 days post-coitum. The 35 micro-CT images were registered into a consensus average image with our automated image registration software and 48 anatomical structures were segmented manually. We report the mean and variation in volumes for each of the 48 segmented structures. Mouse organ volumes vary by 2.6-4.2% on a linear scale when normalized to whole body volume. A power analysis of the volume data reports that a 9-14% volume difference can be detected between two classes of mice with sample sizes of eight. This resource will be crucial in establishing baseline anatomical phenotypic measurements for the assessment of mutant mouse phenotypes, as any future mutant embryo image can be registered to the atlas and subsequent organ volumes calculated automatically.


Journal of The American Society of Nephrology | 2013

Loss of the Ciliary Kinase Nek8 Causes Left-Right Asymmetry Defects

Danielle K. Manning; Mikhail Sergeev; Roy G. Van Heesbeen; Michael D. Wong; Jin Hee Oh; Yan Liu; R. Mark Henkelman; Iain A. Drummond; Jagesh V. Shah; David R. Beier

A missense mutation in mouse Nek8, which encodes a ciliary kinase, produces the juvenile cystic kidneys (jck) model of polycystic kidney disease, but the functions of Nek8 are incompletely understood. Here, we generated a Nek8-null allele and found that homozygous mutant mice die at birth and exhibit randomization of left-right asymmetry, cardiac anomalies, and glomerular kidney cysts. The requirement for Nek8 in left-right patterning is conserved, as knockdown of the zebrafish ortholog caused randomized heart looping. Ciliogenesis was intact in Nek8-deficient embryos and cells, but we observed misexpression of left-sided marker genes early in development, suggesting that nodal ciliary signaling was perturbed. We also generated jck/Nek8 compound heterozygotes; these mutants developed less severe cystic disease than jck homozygotes and provided genetic evidence that the jck allele may encode a gain-of-function protein. Notably, NEK8 and polycystin-2 (PC2) proteins interact, and we found that Nek8(-/-) and Pkd2(-/-) embryonic phenotypes are strikingly similar. Nek8-deficient embryos and cells did express PC2 normally, which localized properly to the cilia. However, similar to cells lacking PC2, NEK8-depleted inner medullary collecting duct cells exhibited a defective response to fluid shear, suggesting that NEK8 may play a role in mediating PC2-dependent signaling.


PLOS ONE | 2013

Design and Implementation of a Custom Built Optical Projection Tomography System

Michael D. Wong; Jun Dazai; Johnathon R. Walls; Nicholas W. Gale; R. Mark Henkelman

Optical projection tomography (OPT) is an imaging modality that has, in the last decade, answered numerous biological questions owing to its ability to view gene expression in 3 dimensions (3D) at high resolution for samples up to several cm3. This has increased demand for a cabinet OPT system, especially for mouse embryo phenotyping, for which OPT was primarily designed for. The Medical Research Council (MRC) Technology group (UK) released a commercial OPT system, constructed by Skyscan, called the Bioptonics OPT 3001 scanner that was installed in a limited number of locations. The Bioptonics system has been discontinued and currently there is no commercial OPT system available. Therefore, a few research institutions have built their own OPT system, choosing parts and a design specific to their biological applications. Some of these custom built OPT systems are preferred over the commercial Bioptonics system, as they provide improved performance based on stable translation and rotation stages and up to date CCD cameras coupled with objective lenses of high numerical aperture, increasing the resolution of the images. Here, we present a detailed description of a custom built OPT system that is robust and easy to build and install. Included is a hardware parts list, instructions for assembly, a description of the acquisition software and a free download site, and methods for calibration. The described OPT system can acquire a full 3D data set in 10 minutes at 6.7 micron isotropic resolution. The presented guide will hopefully increase adoption of OPT throughout the research community, for the OPT system described can be implemented by personnel with minimal expertise in optics or engineering who have access to a machine shop.


Trends in Genetics | 2013

A coming of age: advanced imaging technologies for characterising the developing mouse

Francesca C. Norris; Michael D. Wong; Nicholas D.E. Greene; Peter J. Scambler; Tom Weaver; Wolfgang J. Weninger; Timothy J. Mohun; R. Mark Henkelman; Mark F. Lythgoe

The immense challenge of annotating the entire mouse genome has stimulated the development of cutting-edge imaging technologies in a drive for novel information. These techniques promise to improve understanding of the genes involved in embryo development, at least one third of which have been shown to be essential. Aligning advanced imaging technologies with biological needs will be fundamental to maximising the number of phenotypes discovered in the coming years. International efforts are underway to meet this challenge through an integrated and sophisticated approach to embryo phenotyping. We review rapid advances made in the imaging field over the past decade and provide a comprehensive examination of the relative merits of current and emerging techniques. The aim of this review is to provide a guide to state-of-the-art embryo imaging that will enable informed decisions as to which technology to use and fuel conversations between expert imaging laboratories, researchers, and core mouse production facilities.


PLOS ONE | 2013

Structural Stabilization of Tissue for Embryo Phenotyping Using Micro-CT with Iodine Staining

Michael D. Wong; Shoshana Spring; R. Mark Henkelman

The International Mouse Phenotyping Consortium has been established to conduct large-scale phenotyping of the approximately 23,000 single-gene knockout mice generated by the International Knockout Mouse Consortium to investigate the role of each gene in the mouse genome. Of the generated mouse lines, 30% are predicted to be embryonic lethal, requiring the implementation of imaging techniques and analysis tools specific to late gestation mouse embryo phenotyping. A well-adopted technique combines the use of iodinated contrast solutions and micro-computed tomography imaging. This simple iodine immersion technique provides superior soft-tissue contrast enhancement, however, the hypertonic nature of iodine promotes dehydration causing moderate to severe tissue deformation. Here, we combine the stabilizing properties of a hydrogel mesh with the enhanced contrast properties of iodine. The protocol promotes cross linking of tissue through formaldehyde fixation and the linking of hydrogel monomers to biomolecules. As a result, the hydrogel supports tissue structure and preserves its conformation taking advantage of iodine-enhanced soft tissue contrast to produce high quality mouse embryo images with minimal tissue distortion. Hydrogel stabilization substantially reduces intersample anatomical variation of mature mouse embryos subjected to iodine preparation protocols. A 20% and 50% reduction in intersample variation of normalized brain and lung volume is achieved through hydrogel stabilization, as well as a 20% reduction in variation in overall embryo anatomy as measured through image registration methods. This increases the sensitivity of computer automated analysis to reveal significant anatomical differences between mutant and wild-type mice.


Current Opinion in Genetics & Development | 2011

Genes into geometry: imaging for mouse development in 3D.

Brian J. Nieman; Michael D. Wong; R. Mark Henkelman

Mammalian development is a sophisticated program coordinated by a complex set of genetic and physiological factors. Alterations in anatomy or morphology provide intrinsic measures of progress in or deviations from this program. Emerging three-dimensional imaging methods now allow for more sophisticated morphological assessment than ever before, enabling comprehensive phenotyping, visualization of anatomical context and patterns, automated and quantitative morphological analysis, as well as improved understanding of the developmental time course. Furthermore, these imaging tools are becoming increasingly available and will consequently play a prominent role in elucidating the factors that direct and influence mammalian development.


Development | 2014

Automated pipeline for anatomical phenotyping of mouse embryos using micro-CT

Michael D. Wong; Yoshiro Maezawa; Jason P. Lerch; R. Mark Henkelman

The International Mouse Phenotyping Consortium (IMPC) plans to phenotype 20,000 single-gene knockout mice to gain an insight into gene function. Approximately 30% of these knockout mouse lines will be embryonic or perinatal lethal. The IMPC has selected three-dimensional (3D) imaging to phenotype these mouse lines at relevant stages of embryonic development in an attempt to discover the cause of lethality using detailed anatomical information. Rate of throughput is paramount as IMPC production centers have been given the ambitious task of completing this phenotyping project by 2021. Sifting through the wealth of data within high-resolution 3D mouse embryo data sets by trained human experts is infeasible at this scale. Here, we present a phenotyping pipeline that identifies statistically significant anatomical differences in the knockout, in comparison with the wild type, through a computer-automated image registration algorithm. This phenotyping pipeline consists of three analyses (intensity, deformation, and atlas based) that can detect missing anatomical structures and differences in volume of whole organs as well as on the voxel level. This phenotyping pipeline was applied to micro-CT images of two perinatal lethal mouse lines: a hypomorphic mutation of the Tcf21 gene (Tcf21-hypo) and a knockout of the Satb2 gene. With the proposed pipeline we were able to identify the majority of morphological phenotypes previously published for both the Tcf21-hypo and Satb2 mutant mouse embryos in addition to novel phenotypes. This phenotyping pipeline is an unbiased, automated method that highlights only those structural abnormalities that survive statistical scrutiny and illustrates them in a straightforward fashion.


Physiological Genomics | 2012

Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging

Jacqueline A. Gleave; Michael D. Wong; Jun Dazai; Maliha Altaf; R. Mark Henkelman; Jason P. Lerch; Brian J. Nieman

The structural organization of the brain is important for normal brain function and is critical to understand in order to evaluate changes that occur during disease processes. Three-dimensional (3D) imaging of the mouse brain is necessary to appreciate the spatial context of structures within the brain. In addition, the small scale of many brain structures necessitates resolution at the ∼10 μm scale. 3D optical imaging techniques, such as optical projection tomography (OPT), have the ability to image intact large specimens (1 cm(3)) with ∼5 μm resolution. In this work we assessed the potential of autofluorescence optical imaging methods, and specifically OPT, for phenotyping the mouse brain. We found that both specimen size and fixation methods affected the quality of the OPT image. Based on these findings we developed a specimen preparation method to improve the images. Using this method we assessed the potential of optical imaging for phenotyping. Phenotypic differences between wild-type male and female mice were quantified using computer-automated methods. We found that optical imaging of the endogenous autofluorescence in the mouse brain allows for 3D characterization of neuroanatomy and detailed analysis of brain phenotypes. This will be a powerful tool for understanding mouse models of disease and development and is a technology that fits easily within the workflow of biology and neuroscience labs.


Developmental Dynamics | 2013

3D Imaging, Registration, and Analysis of the Early Mouse Embryonic Vasculature

Gregory A. Anderson; Michael D. Wong; Jian Yang; R. Mark Henkelman

Background: Cardiovascular development requires the input of a large number of molecular signaling molecules, and undergoes tightly regulated, three‐dimensional developmental patterning. Conventional developmental biology techniques have successfully identified many of the signaling cascades and molecular cues necessary for proper cardiovascular development, which has furnished us with a wealth of biochemical, molecular, and biologically functional information on how tightly linked cardiac and vascular development are. Still missing, however, is a genuine appreciation of the three‐dimensional (3D) nature of these important developmental steps. Results: Optical projection tomography (OPT) is a 3D imaging technique that allows for high‐resolution imaging of early mouse embryos and their developing cardiovascular systems when a PECAM‐1 antibody stain is used to highlight the vascular branching. Reported here is a method in which several 3D images of mouse embryo vasculatures can be registered, thus allowing for analysis of within‐strain variance between genetically identical mouse pups. Post‐registration, small differences in somitogenesis and ventricular trabeculation patterning can be visualized in mouse pups that differ by as little as a few hours of gestational time. Additionally, similarity metrics (cross‐correlation values) can be calculated to quantify similarities and differences. Two different mouse strains are analyzed (C57Bl/6 and CD‐1), and similar results are recognized in each strain. Conclusions: Visualizing the cardiovascular system in such a precise 3D manner allows for more accuracy in describing the steps that take place during cardiovascular development. This novel method will be applicable to many developmental biology questions in other organ systems and other species. Developmental Dynamics 242:517–528, 2013.

Collaboration


Dive into the Michael D. Wong's collaboration.

Top Co-Authors

Avatar

R. Mark Henkelman

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Brian J. Nieman

Hospital for Sick Children

View shared research outputs
Top Co-Authors

Avatar

Jason P. Lerch

Hospital for Sick Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang J. Weninger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chih-Wei Hsu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Dave Clary

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge