Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael D. Zordan is active.

Publication


Featured researches published by Michael D. Zordan.


Cytometry Part A | 2009

Detection of pathogenic E. coli O157:H7 by a hybrid microfluidic SPR and molecular imaging cytometry device.

Michael D. Zordan; Meggie M. G. Grafton; Ghanashyam Acharya; Lisa M. Reece; Christy L. Cooper; Arthur I. Aronson; Kinam Park; James F. Leary

Current methods to screen for bacterial contamination involve using costly reagents such as antibodies or PCR reagents or time‐costly growth in cultures. There is need for portable, real‐time, multiplex pathogen detection technology that can predict the safety of food. Surface plasmon resonance (SPR) imaging is a sensitive, label‐free method that can detect the binding of an analyte to a surface by the changes in refractive index that occur upon binding. We have designed a hybrid microfluidic biochip to perform multiplexed detection of single‐celled pathogens using a combination of SPR and fluorescence imaging. The device consists of an array of gold spots, each functionalized with a capture biomolecule targeting a specific pathogen. This biosensor array is enclosed by a polydimethylsiloxane microfluidic flow chamber that delivers a magnetically concentrated sample to be tested. The sample is imaged by SPR on the bottom of the biochip and epi‐fluorescence on the top. The prototype instrument was successfully able to image antibody‐captured E. coli O157:H7 bacteria by SPR and fluorescence imaging. The efficiency of capture of these bacteria by the magnetic particles was determined using spectrophotometric ferric oxide absorbance measurements. The binding of the E. coli to each spot was quantified by measuring the percent of the gold spot area upon which the bacteria was bound and analyzed using NIH ImageJ software. This hybrid imaging approach of pathogenic E. coli detection coupled with an estimate of relative infectivity is shown to be a working example of a testing device for potential foodborne pathogens.


Cytometry Part A | 2011

A High Throughput, Interactive Imaging, Bright-Field Wound Healing Assay

Michael D. Zordan; Christopher P. Mill; David J. Riese; James F. Leary

The wound healing assay is a commonly used technique to measure cell motility and migration. Traditional methods of performing the wound healing assay suffer from low throughput and a lack of quantitative data analysis. We have developed a new method to perform a high‐throughput wound healing assay that produces quantitative data using the LEAP™ instrument. The LEAP™ instrument is used to create reproducible wounds in each well of a 96‐well plate by laser ablation. The LEAP™ then records bright field images of each well at several time points. A custom texture segmentation algorithm is used to determine the wound area of each well at each time point. This texture segmentation analysis can provide faster and more accurate image analysis than traditional methods. Experimental results show that reproducible wounds are created by laser ablation with a wound area that varies by less than 10%. This method was tested by confirming that neuregulin‐2β increases the rate of wound healing by MCF7 cells in a dose dependent manner. This automated wound healing assay has greatly improved the speed and accuracy, making it a suitable high‐throughput method for drug screening.


Genes & Cancer | 2011

ErbB2 Is Necessary for ErbB4 Ligands to Stimulate Oncogenic Activities in Models of Human Breast Cancer

Christopher P. Mill; Michael D. Zordan; S. Michael Rothenberg; Jeffrey Settleman; James F. Leary; David J. Riese

ErbB4 is a member of the ErbB family of receptor tyrosine kinases. This family includes ErbB2 (HER2/Neu), a validated therapeutic target in breast cancer. Several studies indicate that ErbB4 functions as a tumor suppressor in breast cancer, whereas others indicate that ErbB4 functions as an oncogene. Here the authors explore the context in which ErbB4 functions as an oncogene. Silencing expression of either ErbB2 or ErbB4 in breast tumor cell lines results in reduced stimulation of anchorage independence and cell motility by the ErbB4 agonist neuregulin 2β. ErbB2 tyrosine kinase activity, but not ErbB4 tyrosine kinase activity, is required for neuregulin 2β to stimulate cell proliferation. Moreover, sites of ErbB4 tyrosine phosphorylation, but not sites of ErbB2 tyrosine phosphorylation, are required for neuregulin 2β to couple to cell proliferation. These data suggest that targeting ErbB2 expression or tyrosine kinase activity may be effective in treating ErbB4-dependent breast tumors, even those tumors that lack ErbB2 overexpression.


Proceedings of SPIE | 2011

An integrated microfluidic biosensor for the rapid screening of foodborne pathogens by surface plasmon resonance imaging

Michael D. Zordan; Meggie M. G. Grafton; James F. Leary

The rapid detection of foodborne pathogens is of vital importance to keep the food supply rid of contamination. Previously we have demonstrated the design of a hybrid optical device that performs real-time surface plasmon resonance (SPR) and epi-fluorescence imaging. Additionally we have developed a biosensor array chip that is able to specifically detect the presence of two known pathogens. This biosensor detects the presence of the pathogen strains by the selective capture of whole pathogens by peptide ligands functionalized to the spots of the array. We have incorporated this biosensor array into a self contained PDMS microfluidic chip. The enclosure of the biosensor array by a PDMS microfluidic chip allows for a sample to be screened for many strains of pathogens simultaneously in a safe one time use biochip. This disposable optical biochip is inserted into with the hybrid SPR/epi-fluorescence imaging device to form an integrated system for the detection of foodborne pathogens. Using this integrated system, we can selectively detect the presence of E. coli 0157:H7 or S. enterica in a simultaneously in real-time. Additionally, we have modeled the mechanical properties of the microfluidic biochip in order to manipulate the flow conditions to achieve optimal pathogen capture by the biosensor array. We have developed an integrated system that is able to screen a sample for multiple foodborne pathogens simultaneously in a safe, rapid and label-free manner.


Microfluidics, BioMEMS, and Medical Microsystems VIII | 2010

Portable microfluidic cytometer for whole blood cell analysis

Meggie M. G. Grafton; Michael D. Zordan; Han Sheng Chuang; Pooja Rajdev; Lisa M. Reece; Pedro P. Irazoqui; Steven T. Wereley; Ron Byrnes; Paul Todd; James F. Leary

Lab-on-a-chip (LOC) systems allow complex laboratory assays to be carried out on a single chip using less time, reagents, and manpower than traditional methods. There are many chips addressing PCR and other DNA assays, but few that address blood cell analysis. Blood analysis, particularly of the cellular component, is highly important in both medical and scientific fields. Traditionally blood samples require a vial of blood, then several processing steps to separate and stain the various components, followed by the preparations for each specific assay to be performed. A LOC system for blood cell analysis and sorting would be ideal. The microfluidic-based system we have developed requires a mere drop of blood to be introduced onto the chip. Once on chip, the blood is mixed with both fluorescent and magnetic labels. The lab-on-a-chip device then uses a syringe drive to push the cells through the chip, while a permanent magnet is positioned to pull the magnetically labeled white blood cells to a separate channel. The white blood cells, labeled with different color fluorescent quantum dots (Qdots) conjugated to antibodies against WBC subpopulations, are analyzed and counted, while a sampling of red blood cells is also counted in a separate channel. This device will be capable of processing whole blood samples on location in a matter of minutes and displaying the cell count and should eventually find use in neonatology, AIDS and remote site applications.


Bios | 2009

A microfluidic-based hybrid SPR/molecular imaging biosensor for the multiplexed detection of foodborne pathogens

Michael D. Zordan; Meggie M. G. Grafton; Ghanashyam Acharya; Lisa M. Reece; Arthur I. Aronson; Kinam Park; James F. Leary

It is important to screen our food supply for pathogen contaminations. Current methods to screen for bacterial contamination involve using costly reagents such as antibodies or PCR reagents or time-costly growth in cultures. There is need for portable, real-time, multiplex pathogen detection technology that can predict the safety of food where it is produced or distributed. Surface plasmon resonance (SPR) imaging is a sensitive, label-free method that can detect the binding of an analyte to a surface due to changes in refractive index that occur upon binding. It can be used for label-free detection of the presence of potential pathogens. Simultaneous fluorescence molecular imaging on the other side of the biochip can be used to ascertain pathogen status or functional state which may affect its potential danger to humans or animals. We are designing and testing hybrid microfluidic biochips to detect multiple pathogens using a combination of SPRI and fluorescence imaging. The device consists of an array of gold spots, each functionalized with a peptide targeting a specific pathogen. This peptide biosensor array is enclosed by a PDMS microfluidic flow chamber that delivers a magnetically concentrated sample to be tested. An SPR image is taken from the bottom of the biochip. Image analysis is used to quantify the amount of pathogen (both live and dead) bound to each spot. Since PDMS is very transmissive to visible light, an epi-fluorescence image is taken from the top of the biochip. Fluorescence imaging determines the live:dead ratio of each pathogen using an inexpensive SYTO 9(R)-Propidium Iodide assay. The volume of sample that the biochip can analyze is small, so possible pathogens are pre-concentrated using immunomagnetic separation. Functionalized magnetic particles are bound to pathogens present in the sample, and a magnet is used to separate them from the bulk fluid.


Proceedings of SPIE | 2011

Detection and Isolation of rare cells by 2-step enrichment high-speed flow cytometry/cell sorting and single cell LEAP laser ablation

Michael D. Zordan; James F. Leary

The clonal isolation of rare cells, especially cancer and stem cells, in a population is important to the development of improved medical treatment. We have demonstrated that the Laser-Enabled Analysis and Processing (LEAP, Cyntellect Inc., San Diego, CA) instrument can be used to efficiently produce single cell clones by photoablative dilution. Additionally, we have also shown that cells present at low frequencies can be cloned by photoablative dilution after they are pre-enriched by flow cytometry based cell sorting. Circulating tumor cells were modeled by spiking isolated peripheral blood cells with cells from the lung carcinoma cell line A549. Flow cytometry based cell sorting was used to perform an enrichment sort of A549 cells directly into a 384 well plate. Photoablative dilution was performed with the LEAPTM instrument to remove any contaminating cells, and clonally isolate 1 side population cell per well. We were able to isolate and grow single clones of side population cells using this method at greater than 90% efficiency. We have developed a 2 step method that is able to perform the clonal isolation of rare cells based on a medically relevant functional phenotype.


Microfluidics, BioMEMS, and Medical Microsystems IX | 2011

Microfluidic MEMS hand-held flow cytometer

Meggie M. G. Grafton; Teimour Maleki; Michael D. Zordan; Lisa M. Reece; Ron Byrnes; Alan Jones; Paul Todd; James F. Leary

Due to a number of recent technological advances, a hand-held flow cytometer can be achieved by use of semiconductor illuminators, optical sensors (all battery powered) and sensitive cell markers such as immuno-quantum dot (Qdot) labels. The specific application described is of a handheld blood analyzer that can quickly process a drop of whole, unfractionated human peripheral blood by real-time, on-chip magnetic separation of white blood cells (WBCs) and red blood cells (RBCs) and further fluorescence analysis of Qdot labeled WBC subsets. Various microfluidic patterns were fabricated in PDMS and used to characterize flow of single cells and magnetic deflection of magnetically labeled cells. An LED excitation, avalanche photodiode detection system (SensL Technologies, Ltd., Cork, Ireland) was used for immuno-Qdot detection of WBC subsets. A static optical setup was used to determine the sensitivity of the detection system. In this work we demonstrate: valve-less, on-chip magnetic sorting of immunomagnetically labeled white blood cells, bright Qdot labeling of lymphocytes, and counting of labeled white blood cells. Comparisons of these results with conventional flow cytometric analyses are reported. Sample preparation efficiency was determined by labeling of isolated white blood cells. Appropriate flow rates were determined for optical detection and confirmed with flowing particles. Several enabling technologies required for a truly portable, battery powered, hand-held flow cytometer for use in future point-of-care diagnostic devices have been demonstrated. The combining of these technologies into an integrated handheld instrument is in progress and results on whole blood cell analysis are to be reported in another paper.


Bios | 2010

The design of a microfluidic biochip for the rapid, multiplexed detection of foodborne pathogens by surface plasmon resonance imaging

Michael D. Zordan; Meggie M. G. Grafton; Kinam Park; James F. Leary

The rapid detection of foodborne pathogens is increasingly important due to the rising occurrence of contaminated food supplies. We have previously demonstrated the design of a hybrid optical device that has the capability to perform realtime surface plasmon resonance (SPR) and epi-fluorescence imaging. We now present the design of a microfluidic biochip consisting of a two-dimensional array of functionalized gold spots. The spots on the array have been functionalized with capture peptides that specifically bind E. coli O157:H7 or Salmonella enterica. This array is enclosed by a PDMS microfluidic flow cell. A magnetically pre-concentrated sample is injected into the biochip, and whole pathogens will bind to the capture array. The previously constructed optical device is being used to detect the presence and identity of captured pathogens using SPR imaging. This detection occurs in a label-free manner, and does not require the culture of bacterial samples. Molecular imaging can also be performed using the epi-fluorescence capabilities of the device to determine pathogen state, or to validate the identity of the captured pathogens using fluorescently labeled antibodies. We demonstrate the real-time screening of a sample for the presence of E. coli O157:H7 and Salmonella enterica. Additionally the mechanical properties of the microfluidic flow cell will be assessed. The effect of these properties on pathogen capture will be examined.


Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VII | 2009

Photoablative dilution with pre-enrichment for the clonal isolation of rare cancer cells

Michael D. Zordan; James F. Leary

The clonal isolation of rare cells, especially cancer and stem cells, in a population is important to cell biology. We have demonstrated that the Laser-Enabled Analysis and Processing (LEAP, Cyntellect Inc., San Diego, CA) instrument can be used to efficiently produce clones by photoablative dilution. The LEAP instrument performs automated fluorescence imaging and real-time image analysis to classify cells. The instrument also features a pulsed laser that gives it the ability to purify a sample by eliminating unwanted cells via laser ablation or UV-induced apoptosis. In photoablative dilution, rare cells are deposited into a multiwell plate at 10 cells per well. Then one cell is chosen to clone, and the other cells present in the well are eliminated by laser ablation. We have successfully used LEAP to produce single cell clones in 95% of wells (originally containing 5±2.1 cells/well). While photoablative dilution is a very effective way of producing clonal cultures, it has a fundamental limitation in the low number of cells that can be processed. This can be overcome by performing a pre-enrichment to increase the frequency of the rare cells to be cloned. Another enrichment strategy is flow cytometry based cell sorting. Flow sorting can provide greater than 104 fold enrichment and cells can be sorted directly into a multiwell plate. With pre-enrichment, photoablative dilution can be used to clonally isolate rare cells. This is especially important in cases where the total number of potentially rare cells recovered by first stage enrichment sorting is only 10-200 cells. Such a situation which would normally preclude second pass sorting for purity by the high-throughput first stage cell separation technology.

Collaboration


Dive into the Michael D. Zordan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Todd

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge