Michaël De Becker
University of Liège
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michaël De Becker.
The Astronomy and Astrophysics Review | 2007
Michaël De Becker
In this paper, I present a general discussion of several astrophysical processes likely to play a role in the production of non-thermal emission in massive stars, with emphasis on massive binaries. Even though the discussion will start in the radio domain where the non-thermal emission was first detected, the census of physical processes involved in the non-thermal emission from massive stars shows that many spectral domains are concerned, from the radio to the very high energies. First, the theoretical aspects of the non-thermal emission from early-type stars will be addressed. The main topics that will be discussed are respectively the physics of individual stellar winds and their interaction in binary systems, the acceleration of relativistic electrons, the magnetic field of massive stars, and finally the non-thermal emission processes relevant to the case of massive stars. Second, this general qualitative discussion will be followed by a more quantitative one, devoted to the most probable scenario where non-thermal radio emitters are massive binaries. I will show how several stellar, wind and orbital parameters can be combined in order to make some semi-quantitative predictions on the high-energy counterpart to the non-thermal emission detected in the radio domain. These theoretical considerations will be followed by a census of results obtained so far, and related to this topic. These results concern the radio, the visible, the X-ray and the γ-ray domains. Prospects for the very high energy γ-ray emission from massive stars will also be addressed. Two particularly interesting examples—one O-type and one Wolf-Rayet binary—will be considered in details. Finally, strategies for future developments in this field will be discussed.
The Astrophysical Journal | 2010
Christina Aragona; M. Virginia McSwain; Michaël De Becker
HD 259440 is a B0pe star that was proposed as the optical counterpart to the γ-ray source HESS J0632+057. Here, we present optical spectra of HD 259440 acquired to investigate the stellar parameters, the properties of the Be star disk, and evidence of binarity in this system. Emission from the Hα line shows evidence of a spiral density wave in the nearly edge-on disk. We find a best-fit stellar effective temperature of 27,500-30,000 K and a log surface gravity of 3.75-4.0, although our fits are somewhat ambiguous due to scattered light from the circumstellar disk. We derive a mass of 13.2-19.0 M ☉ and a radius of 6.0-9.6 R ☉. By fitting the spectral energy distribution, we find a distance between 1.1 and 1.7 kpc. We do not detect any significant radial velocity shifts in our data, ruling out orbital periods shorter than one month. If HD 259440 is a binary, it is likely a long-period (>100 d) system.
Astronomy and Astrophysics | 2003
Grégor Rauw; Michaël De Becker; Eric Gosset; J. M. Pittard; Ian R. Stevens
We report the detection of a number of X-ray sources associated with the very young open cluster NGC 6383. About two thirds of these objects are correlated with a rather faint optical source and all but one have at least one infrared counterpart within a correlation radius of 8 arcsec. Although NGC 6383 is not associated with a prominent star forming region, the overall properties of many of the X-ray sources suggest that they may be candidates for low-mass pre-main sequence stars. The number of X-ray sources increases towards the cluster center suggesting that there exists a close relation between the massive O-star binary system HD 159 176 in the cluster core and the population of X-ray bright low-mass objects in NGC 6383.
Astronomy and Astrophysics | 2012
H. Le Coroller; Julien Dejonghe; X. Regal; R. Sottile; D. Mourard; Davide Ricci; Olivier Lardière; A. Le Vansuu; Michel Boer; Michaël De Becker; J. M. Clausse; C. Guillaume; J.-P. Meunier
Studies are under way to propose a new generation of post-VLTI interferometers. The Carlina concept studied at the Haute- Provence Observatory is one of the proposed solutions. It consists in an optical interferometer configured like a diluted version of the Arecibo radio telescope: above the diluted primary mirror made of fixed cospherical segments, a helium balloon (or cables suspended between two mountains), carries a gondola containing the focal optics. Since 2003, we have been building a technical demonstrator of this diluted telescope. First fringes were obtained in May 2004 with two closely-spaced primary segments and a CCD on the focal gondola. We have been testing the whole optical train with three primary mirrors. The main aim of this article is to describe the metrology that we have conceived, and tested under the helium balloon to align the primary mirrors separate by 5-10 m on the ground with an accuracy of a few microns. The servo loop stabilizes the mirror of metrology under the helium balloon with an accuracy better than 5 mm while it moves horizontally by 30 cm in open loop by 10-20 km/h of wind. We have obtained the white fringes of metrology; i.e., the three mirrors are aligned (cospherized) with an accuracy of {\approx} 1 micron. We show data proving the stability of fringes over 15 minutes, therefore providing evidence that the mechanical parts are stabilized within a few microns. This is an important step that demonstrates the feasibility of building a diluted telescope using cables strained between cliffs or under a balloon. Carlina, like the MMT or LBT, could be one of the first members of a new class of telescopes named diluted telescopes.
Astrophysics and Space Science | 2005
Michaël De Becker; Grégor Rauw; Jean-Pierre Swings
We present the results of an intensive spectroscopic campaign in the optical waveband revealing that Cyg OB2 #8A is an O6+O5.5 binary system with a period of about 21.9 days. Cyg OB2 #8A is a bright X-ray source, as well as a non-thermal radio emitter. We discuss the binarity of this star in the framework of a campaign devoted to the study of non-thermal emitters, from the radio waveband to γ-rays. In this context, we attribute the non-thermal radio emission from this star to a population of relativistic electrons, accelerated by the shock of the wind-wind collision. These relativistic electrons could also be responsible for a putative γ-ray emission through inverse Compton scattering of photospheric UV photons, thus contributing to the yet unidentified EGRET source 3EG J2033+4118.
Proceedings of SPIE | 2008
Fabien Malbet; David F. Buscher; Gerd Weigelt; Paulo Garcia; M. Gai; D. Lorenzetti; Jean Surdej; J. Hron; R. Neuhäuser; Pierre Kern; L. Jocou; J.-P. Berger; Olivier Absil; Udo Beckmann; Leonardo Corcione; Gilles Duvert; Mercedes E. Filho; Pierre Labeye; E. Le Coarer; G. Li Causi; J. G. R. Lima; K. Perraut; E. Tatulli; Éric Thiébaut; John S. Young; G. Zins; A. Amorim; Bernard Aringer; T. Beckert; M. Benisty
The VLTI Spectro Imager (VSI) was proposed as a second-generation instrument of the Very Large Telescope Interferometer providing the ESO community with spectrally-resolved, near-infrared images at angular resolutions down to 1.1 milliarcsecond and spectral resolutions up to R = 12000. Targets as faint as K = 13 will be imaged without requiring a brighter nearby reference object; fainter targets can be accessed if a suitable reference is available. The unique combination of high-dynamic-range imaging at high angular resolution and high spectral resolution enables a scientific program which serves a broad user community and at the same time provides the opportunity for breakthroughs in many areas of astrophysics. The high level specifications of the instrument are derived from a detailed science case based on the capability to obtain, for the first time, milliarcsecond-resolution images of a wide range of targets including: probing the initial conditions for planet formation in the AU-scale environments of young stars; imaging convective cells and other phenomena on the surfaces of stars; mapping the chemical and physical environments of evolved stars, stellar remnants, and stellar winds; and disentangling the central regions of active galactic nuclei and supermassive black holes. VSI will provide these new capabilities using technologies which have been extensively tested in the past and VSI requires little in terms of new infrastructure on the VLTI. At the same time, VSI will be able to make maximum use of new infrastructure as it becomes available; for example, by combining 4, 6 and eventually 8 telescopes, enabling rapid imaging through the measurement of up to 28 visibilities in every wavelength channel within a few minutes. The current studies are focused on a 4-telescope version with an upgrade to a 6-telescope one. The instrument contains its own fringe tracker and tip-tilt control in order to reduce the constraints on the VLTI infrastructure and maximize the scientific return.
Proceedings of SPIE | 2008
Mercedes E. Filho; S. Renard; Paulo Garcia; Gilles Duvert; Gaspard Duchene; Éric Thiébaut; John S. Young; Olivier Absil; J.-P. Berger; T. Beckert; Sebastian Hoenig; D. Schertl; Gerd Weigelt; Leonardo Testi; Eric Tatuli; Virginie Borkowski; Michaël De Becker; Jean Surdej; Bernard Aringer; J. Hron; Thomas Lebzelter; A. Chiavassa; Romano L. M. Corradi; Tim J. Harries
Classically, optical and near-infrared interferometry have relied on closure phase techniques to produce images. Such techniques allow us to achieve modest dynamic ranges. In order to test the feasibility of next generation optical interferometers in the context of the VLTI-spectro-imager (VSI), we have embarked on a study of image reconstruction and analysis. Our main aim was to test the influence of the number of telescopes, observing nights and distribution of the visibility points on the quality of the reconstructed images. Our results show that observations using six Auxiliary Telescopes (ATs) during one complete night yield the best results in general and is critical in most science cases; the number of telescopes is the determining factor in the image reconstruction outcome. In terms of imaging capabilities, an optical, six telescope VLTI-type configuration and ~200 meter baseline will achieve 4 mas spatial resolution, which is comparable to ALMA and almost 50 times better than JWST will achieve at 2.2 microns. Our results show that such an instrument will be capable of imaging, with unprecedented detail, a plethora of sources, ranging from complex stellar surfaces to microlensing events.
Monthly Notices of the Royal Astronomical Society | 2017
Michaël De Becker; M. V. del Valle; Gustavo E. Romero; Cintia Soledad Peri; Paula Benaglia
Fil: del Valle, Maria Victoria. Provincia de Buenos Aires. Gobernacion. Comision de Investigaciones Cientificas. Instituto Argentino de Radioastronomia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - La Plata. Instituto Argentino de Radioastronomia; Argentina
The Astronomical Journal | 2010
M. Virginia McSwain; Michaël De Becker; Mallory Strider Ellison Roberts; Tabetha S. Boyajian; Douglas R. Gies; Erika D. Grundstrom; Christina Aragona; Amber N. Marsh; Rachael M. Roettenbacher
HD 15137 is an intriguing runaway O-type binary system that offers a rare opportunity to explore the mechanism by which it was ejected from the open cluster of its birth. Here, we present recent blue optical spectra of HD 15137 and derive a new orbital solution for the spectroscopic binary and physical parameters of the O star primary. We also present the first XMM-Newton observations of the system. Fits of the EPIC spectra indicate soft, thermal X-ray emission consistent with an isolated O star. Upper limits on the undetected hard X-ray emission place limits on the emission from a proposed compact companion in the system, and we rule out a quiescent neutron star (NS) in the propeller regime or a weakly accreting NS. An unevolved secondary companion is also not detected in our optical spectra of the binary, and it is difficult to conclude that a gravitational interaction could have ejected this runaway binary with a low mass optical star. HD 15137 may contain an elusive NS in the ejector regime or a quiescent black hole with conditions unfavorable for accretion at the time of our observations.
arXiv: High Energy Astrophysical Phenomena | 2009
Michaël De Becker; R. Blomme; Giusi Micela; J. M. Pittard; Grégor Rauw; Gustavo E. Romero; H. Sana; Ian R. Stevens
Several colliding‐wind massive binaries are known to be non‐thermal emitters in the radio domain. This constitutes strong evidence for the fact that an efficient particle acceleration process is at work in these objects. The acceleration mechanism is most probably the Diffusive Shock Acceleration (DSA) process in the presence of strong hydrodynamic shocks due to the colliding‐winds. In order to investigate the physics of this particle acceleration, we initiated a multiwavelength campaign covering a large part of the electromagnetic spectrum. In this context, the detailed study of the hard X‐ray emission from these sources in the SIMBOL‐X bandpass constitutes a crucial element in order to probe this still poorly known topic of astrophysics. It should be noted that colliding‐wind massive binaries should be considered as very valuable targets for the investigation of particle acceleration in a similar way as supernova remnants, but in a different region of the parameter space.