Michael De Volder
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael De Volder.
Science | 2013
Michael De Volder; Sameh Tawfick; Ray H. Baughman; A. John Hart
Exploiting Carbon Nanotubes Individual defect-free carbon nanotubes can have exceptional mechanical, thermal, and electrical properties, which has led to speculation on a wide range of potential applications. However, challenges in growing large quantities of pure nanotubes, and for some applications tubes of only one type, have limited their widespread use. De Volder et al. (p. 535) review the efforts that have been made to scale up carbon nanotube production and discuss a number of applications where enhanced materials have made use of carbon nanotubes. Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
Advanced Materials | 2010
Michael De Volder; Sameh Tawfick; Sei Jin Park; Davor Copic; Zhouzhou Zhao; Wei Lu; A. John Hart
A new technology called capillary forming enables transformation of vertically aligned nanoscale filaments into complex three-dimensional microarchitectures. We demonstrate capillary forming of carbon nanotubes into diverse forms having intricate bends, twists, and multidirectional textures. In addition to their novel geometries, these structures have mechanical stiffness exceeding that of microfabrication polymers, and can be used as masters for replica molding
Journal of Micromechanics and Microengineering | 2010
Michael De Volder; Dominiek Reynaerts
The development of MEMS actuators is rapidly evolving and continuously new progress in terms of efficiency, power and force output is reported. Pneumatic and hydraulic are an interesting class of microactuators that are easily overlooked. Despite the 20 years of research, and hundreds of publications on this topic, these actuators are only popular in microfluidic systems. In other MEMS applications, pneumatic and hydraulic actuators are rare in comparison with electrostatic, thermal or piezo-electric actuators. However, several studies have shown that hydraulic and pneumatic actuators deliver among the highest force and power densities at microscale. It is believed that this asset is particularly important in modern industrial and medical microsystems, and therefore, pneumatic and hydraulic actuators could start playing an increasingly important role. This paper shows an in-depth overview of the developments in this field ranging from the classic inflatable membrane actuators to more complex piston–cylinder and drag-based microdevices.
Nano Letters | 2015
Aditya Sadhanala; Shahab Ahmad; Baodan Zhao; Nadja Giesbrecht; Phoebe M. Pearce; Felix Deschler; Robert L. Z. Hoye; Karl C. Gödel; Thomas Bein; Pablo Docampo; Siân E. Dutton; Michael De Volder; Richard H. Friend
Solution-processed organo-lead halide perovskites are produced with sharp, color-pure electroluminescence that can be tuned from blue to green region of visible spectrum (425–570 nm). This was accomplished by controlling the halide composition of CH3NH3Pb(BrxCl1–x)3 [0 ≤ x ≤ 1] perovskites. The bandgap and lattice parameters change monotonically with composition. The films possess remarkably sharp band edges and a clean bandgap, with a single optically active phase. These chloride–bromide perovskites can potentially be used in optoelectronic devices like solar cells and light emitting diodes (LEDs). Here we demonstrate high color-purity, tunable LEDs with narrow emission full width at half maxima (FWHM) and low turn on voltages using thin-films of these perovskite materials, including a blue CH3NH3PbCl3 perovskite LED with a narrow emission FWHM of 5 nm.
Advanced Materials | 2012
Sameh Tawfick; Michael De Volder; Davor Copic; Sei Jin Park; C. Ryan Oliver; Erik S. Polsen; Megan J. Roberts; A. John Hart
Widespread approaches to fabricate surfaces with robust micro- and nanostructured topographies have been stimulated by opportunities to enhance interface performance by combining physical and chemical effects. In particular, arrays of asymmetric surface features, such as arrays of grooves, inclined pillars, and helical protrusions, have been shown to impart unique anisotropy in properties including wetting, adhesion, thermal and/or electrical conductivity, optical activity, and capability to direct cell growth. These properties are of wide interest for applications including energy conversion, microelectronics, chemical and biological sensing, and bioengineering. However, fabrication of asymmetric surface features often pushes the limits of traditional etching and deposition techniques, making it challenging to produce the desired surfaces in a scalable and cost-effective manner. We review and classify approaches to fabricate arrays of asymmetric 2D and 3D surface features, in polymers, metals, and ceramics. Analytical and empirical relationships among geometries, materials, and surface properties are discussed, especially in the context of the applications mentioned above. Further, opportunities for new fabrication methods that combine lithography with principles of self-assembly are identified, aiming to establish design principles for fabrication of arbitrary 3D surface textures over large areas.
Proceedings of the National Academy of Sciences of the United States of America | 2013
James N. Wilking; Vasily Zaburdaev; Michael De Volder; Richard Losick; Michael P. Brenner; David A. Weitz
Many bacteria on earth exist in surface-attached communities known as biofilms. These films are responsible for manifold problems, including hospital-acquired infections and biofouling, but they can also be beneficial. Biofilm growth depends on the transport of nutrients and waste, for which diffusion is thought to be the main source of transport. However, diffusion is ineffective for transport over large distances and thus should limit growth. Nevertheless, biofilms can grow to be very large. Here we report the presence of a remarkable network of well-defined channels that form in wild-type Bacillus subtilis biofilms and provide a system for enhanced transport. We observe that these channels have high permeability to liquid flow and facilitate the transport of liquid through the biofilm. In addition, we find that spatial variations in evaporative flux from the surface of these biofilms provide a driving force for the flow of liquid in the channels. These channels offer a remarkably simple system for liquid transport, and their discovery provides insight into the physiology and growth of biofilms.
Angewandte Chemie | 2013
Michael De Volder; A. John Hart
Surfaces coated with nanoscale filaments such as silicon nanowires and carbon nanotubes are potentially compelling for high-performance battery and capacitor electrodes, photovoltaics, electrical interconnects, substrates for engineered cell growth, dry adhesives, and other smart materials. However, many of these applications require a wet environment or involve wet processing during their synthesis. The capillary forces introduced by these wet environments can lead to undesirable aggregation of nanoscale filaments, but control of capillary forces can enable manipulation of the filaments into discrete aggregates and novel hierarchical structures. Recent studies suggest that the elastocapillary self-assembly of nanofilaments can be a versatile and scalable means to build complex and robust surface architectures. To enable a wider understanding and use of elastocapillary self-assembly as a fabrication technology, we give an overview of the underlying fundamentals and classify typical implementations and surface designs for nanowires, nanotubes, and nanopillars made from a wide variety of materials. Finally, we discuss exemplary applications and future opportunities to realize new engineered surfaces by the elastocapillary self-assembly of nanofilaments.
Journal of Micromechanics and Microengineering | 2011
Michael De Volder; Sei Jin Park; Sameh Tawfick; Daniel Vidaud; A. John Hart
Vertically aligned carbon nanotube (CNT) ‘forest’ microstructures fabricated by chemical vapor deposition (CVD) using patterned catalyst films typically have a low CNT density per unit area. As a result, CNT forests have poor bulk properties and are too fragile for integration with microfabrication processing. We introduce a new self-directed capillary densification method where a liquid is controllably condensed onto and evaporated from the CNT forests. Compared to prior approaches, where the substrate with CNTs is immersed in a liquid, our condensation approach gives significantly more uniform structures and enables precise control of the CNT packing density. We present a set of design rules and parametric studies of CNT micropillar densification by self-directed capillary action, and show that self-directed capillary densification enhances Young’s modulus and electrical conductivity of CNT micropillars by more than three orders of magnitude. Owing to the outstanding properties of CNTs, this scalable process will be useful for the integration of CNTs as a functional material in microfabricated devices for mechanical, electrical, thermal and biomedical applications. (Some figures in this article are in colour only in the electronic version)
Langmuir | 2011
Sameh Tawfick; Michael De Volder; A. John Hart
We demonstrate the fabrication of horizontally aligned carbon nanotube (HA-CNT) networks by spatially programmable folding, which is induced by self-directed liquid infiltration of vertical CNTs. Folding is caused by a capillary buckling instability and is predicted by the elastocapillary buckling height, which scales with the wall thickness as t(3/2). The folding direction is controlled by incorporating folding initiators at the ends of the CNT walls, and the initiators cause a tilt during densification which precedes buckling. By patterning these initiators and specifying the wall geometry, we control the dimensions of HA-CNT patches over 2 orders of magnitude and realize multilayered and multidirectional assemblies. Multidirectional HA-CNT patterns are building blocks for custom design of nanotextured surfaces and flexible circuits.
ACS Nano | 2011
Michael De Volder; Rob Vansweevelt; Patrick Wagner; Dominiek Reynaerts; Chris Van Hoof; A. John Hart
We present a new approach for the fabrication and integration of vertically aligned forests of amorphous carbon nanowires (CNWs), using only standard lithography, oxygen plasma treatment, and thermal processing. The simplicity and scalability of this process, as well as the hierarchical organization of CNWs, provides a potential alternative to the use of carbon nanotubes and graphene for applications in microsystems and high surface area materials. The CNWs are highly branched at the nanoscale, and novel hierarchical microstructures with CNWs connected to a solid amorphous core are made by controlling the plasma treatment time. By multilayer processing we demonstrate deterministic joining of CNW micropillars into 3D sensing networks. Finally we show that these networks can be chemically functionalized and used for measurement of DNA binding with increased sensitivity.