Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Didié is active.

Publication


Featured researches published by Michael Didié.


Nature Medicine | 2006

Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts

Wolfram-Hubertus Zimmermann; Ivan Melnychenko; Gerald Wasmeier; Michael Didié; Hiroshi Naito; Uwe Nixdorff; Andreas Hess; Lubos Budinsky; Kay Brune; Bjela Michaelis; Stefan Dhein; Alexander P. Schwoerer; Heimo Ehmke; Thomas Eschenhagen

The concept of regenerating diseased myocardium by implantation of tissue-engineered heart muscle is intriguing, but convincing evidence is lacking that heart tissues can be generated at a size and with contractile properties that would lend considerable support to failing hearts. Here we created large (thickness/diameter, 1–4 mm/15 mm), force-generating engineered heart tissue from neonatal rat heart cells. Engineered heart tissue formed thick cardiac muscle layers when implanted on myocardial infarcts in immune-suppressed rats. When evaluated 28 d later, engineered heart tissue showed undelayed electrical coupling to the native myocardium without evidence of arrhythmia induction. Moreover, engineered heart tissue prevented further dilation, induced systolic wall thickening of infarcted myocardial segments and improved fractional area shortening of infarcted hearts compared to controls (sham operation and noncontractile constructs). Thus, our study provides evidence that large contractile cardiac tissue grafts can be constructed in vitro, can survive after implantation and can support contractile function of infarcted hearts.


Circulation | 2006

Optimizing Engineered Heart Tissue for Therapeutic Applications as Surrogate Heart Muscle

Hiroshi Naito; Ivan Melnychenko; Michael Didié; Karin Schneiderbanger; Pia Schubert; Stephan Rosenkranz; Thomas Eschenhagen; Wolfram-Hubertus Zimmermann

Background— Cardiac tissue engineering aims at providing heart muscle for cardiac regeneration. Here, we hypothesized that engineered heart tissue (EHT) can be improved by using mixed heart cell populations, culture in defined serum-free and Matrigel-free conditions, and fusion of single-unit EHTs to multi-unit heart muscle surrogates. Methods and Results— EHTs were constructed from native and cardiac myocyte enriched heart cell populations. The former demonstrated a superior contractile performance and developed vascular structures. Peptide growth factor-supplemented culture medium was developed to maintain contractile EHTs in a serum-free environment. Addition of triiodothyronine and insulin facilitated withdrawal of Matrigel from the EHT reconstitution mixture. Single-unit EHTs could be fused to form large multi-unit EHTs with variable geometries. Conclusions— Simulating a native heart cell environment in EHTs leads to improved function and formation of primitive capillaries. The latter may constitute a preformed vascular bed in vitro and facilitate engraftment in vivo. Serum- and Matrigel-free culture conditions are expected to reduce immunogenicity of EHT. Fusion of single-unit EHT allows production of large heart muscle constructs that may eventually serve as optimized tissue grafts in cardiac regeneration in vivo.


Nature Medicine | 2010

Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation

Volker Rudolph; René Andrié; Tanja K. Rudolph; Kai Friedrichs; Anna Klinke; Birgit Hirsch-Hoffmann; Alexander P. Schwoerer; Denise Lau; Xiaoming Fu; Karin Klingel; Karsten Sydow; Michael Didié; Anika Seniuk; Eike Christin Von Leitner; Katalin Szoecs; Jan W. Schrickel; Hendrik Treede; Ulrich Wenzel; Thorsten Lewalter; Georg Nickenig; Wolfram-Hubertus Zimmermann; Thomas Meinertz; Rainer H. Böger; Hermann Reichenspurner; Bruce A. Freeman; Thomas Eschenhagen; Heimo Ehmke; Stanley L. Hazen; Stephan Willems; Stephan Baldus

Observational clinical and ex vivo studies have established a strong association between atrial fibrillation and inflammation. However, whether inflammation is the cause or the consequence of atrial fibrillation and which specific inflammatory mediators may increase the atrias susceptibility to fibrillation remain elusive. Here we provide experimental and clinical evidence for the mechanistic involvement of myeloperoxidase (MPO), a heme enzyme abundantly expressed by neutrophils, in the pathophysiology of atrial fibrillation. MPO-deficient mice pretreated with angiotensin II (AngII) to provoke leukocyte activation showed lower atrial tissue abundance of the MPO product 3-chlorotyrosine, reduced activity of matrix metalloproteinases and blunted atrial fibrosis as compared to wild-type mice. Upon right atrial electrophysiological stimulation, MPO-deficient mice were protected from atrial fibrillation, which was reversed when MPO was restored. Humans with atrial fibrillation had higher plasma concentrations of MPO and a larger MPO burden in right atrial tissue as compared to individuals devoid of atrial fibrillation. In the atria, MPO colocalized with markedly increased formation of 3-chlorotyrosine. Our data demonstrate that MPO is a crucial prerequisite for structural remodeling of the myocardium, leading to an increased vulnerability to atrial fibrillation.


Circulation Research | 2011

Terminal Differentiation, Advanced Organotypic Maturation, and Modeling of Hypertrophic Growth in Engineered Heart Tissue

Malte Tiburcy; Michael Didié; Oliver Boy; Peter Christalla; Stephan Döker; Hiroshi Naito; Bijoy Chandapillai Karikkineth; Ali El-Armouche; Michael Grimm; Monika Nose; Thomas Eschenhagen; Anke Zieseniss; Doerthe M. Katschinski; Nazha Hamdani; Wolfgang A. Linke; Xiaoke Yin; Manuel Mayr; Wolfram-Hubertus Zimmermann

Rationale: Cardiac tissue engineering should provide “realistic” in vitro heart muscle models and surrogate tissue for myocardial repair. For either application, engineered myocardium should display features of native myocardium, including terminal differentiation, organotypic maturation, and hypertrophic growth. Objective: To test the hypothesis that 3D-engineered heart tissue (EHT) culture supports (1) terminal differentiation as well as (2) organotypic assembly and maturation of immature cardiomyocytes, and (3) constitutes a methodological platform to investigate mechanisms underlying hypertrophic growth. Methods and Results: We generated EHTs from neonatal rat cardiomyocytes and compared morphological and molecular properties of EHT and native myocardium from fetal, neonatal, and adult rats. We made the following key observations: cardiomyocytes in EHT (1) gained a high level of binucleation in the absence of notable cytokinesis, (2) regained a rod-shape and anisotropic sarcomere organization, (3) demonstrated a fetal-to-adult gene expression pattern, and (4) responded to distinct hypertrophic stimuli with concentric or eccentric hypertrophy and reexpression of fetal genes. The process of terminal differentiation and maturation (culture days 7–12) was preceded by a tissue consolidation phase (culture days 0–7) with substantial cardiomyocyte apoptosis and dynamic extracellular matrix restructuring. Conclusions: This study documents the propensity of immature cardiomyocytes to terminally differentiate and mature in EHT in a remarkably organotypic manner. It moreover provides the rationale for the utility of the EHT technology as a methodological bridge between 2D cell culture and animal models.


Cardiovascular Research | 2008

Phosphatase inhibitor-1-deficient mice are protected from catecholamine-induced arrhythmias and myocardial hypertrophy

Ali El-Armouche; Katrin Wittköpper; Franziska Degenhardt; Florian Weinberger; Michael Didié; Ivan Melnychenko; Michael Grimm; Micha Peeck; Wolfram H. Zimmermann; Bernhard Unsöld; Gerd Hasenfuss; Dobromir Dobrev; Thomas Eschenhagen

AIMS Phosphatase inhibitor-1 (I-1) is a conditional amplifier of beta-adrenergic signalling downstream of protein kinase A by inhibiting type-1 phosphatases only in its PKA-phosphorylated form. I-1 is downregulated in failing hearts and thus contributes to beta-adrenergic desensitization. It is unclear whether this should be viewed as a predominantly adverse or protective response. METHODS AND RESULTS We generated transgenic mice with cardiac-specific I-1 overexpression (I-1-TG) and evaluated cardiac function and responses to catecholamines in mice with targeted disruption of the I-1 gene (I-1-KO). Both groups were compared with their wild-type (WT) littermates. I-1-TG developed cardiac hypertrophy and mild dysfunction which was accompanied by a substantial compensatory increase in PP1 abundance and activity, confounding cause-effect relationships. I-1-KO had normal heart structure with mildly reduced sensitivity, but unchanged maximal contractile responses to beta-adrenergic stimulation, both in vitro and in vivo. Notably, I-1-KO were partially protected from lethal catecholamine-induced arrhythmias and from hypertrophy and dilation induced by a 7 day infusion with the beta-adrenergic agonist isoprenaline. Moreover, I-1-KO exhibited a partially preserved acute beta-adrenergic response after chronic isoprenaline, which was completely absent in similarly treated WT. At the molecular level, I-1-KO showed lower steady-state phosphorylation of the cardiac ryanodine receptor/Ca(2+) release channel and the sarcoplasmic reticulum (SR) Ca(2+)-ATPase-regulating protein phospholamban. These alterations may lower the propensity for diastolic Ca(2+) release and Ca(2+) uptake and thus stabilize the SR and account for the protection. CONCLUSION Taken together, loss of I-1 attenuates detrimental effects of catecholamines on the heart, suggesting I-1 downregulation in heart failure as a beneficial desensitization mechanism and I-1 inhibition as a potential novel strategy for heart failure treatment.


Journal of Clinical Investigation | 2013

Parthenogenetic stem cells for tissue-engineered heart repair

Michael Didié; Peter Christalla; Michael Rubart; Vijayakumar Muppala; Stephan Döker; Bernhard Unsöld; Ali El-Armouche; Thomas Rau; Thomas Eschenhagen; Alexander P. Schwoerer; Heimo Ehmke; Udo Schumacher; Sigrid Fuchs; Claudia Lange; Alexander Becker; Wen Tao; John A. Scherschel; Mark H. Soonpaa; Tao Yang; Qiong Lin; Martin Zenke; Dong Wook Han; Hans R. Schöler; Cornelia Rudolph; Doris Steinemann; Brigitte Schlegelberger; Steve Kattman; Alec D. Witty; Gordon Keller; Loren J. Field

Uniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized that nonembryonic parthenogenetic stem cells (PSCs) can be directed toward the cardiac lineage and applied to tissue-engineered heart repair. We first confirmed similar fundamental properties in murine PSCs and embryonic stem cells (ESCs), despite notable differences in genetic (allelic variability) and epigenetic (differential imprinting) characteristics. Haploidentity of major histocompatibility complexes (MHCs) in PSCs is particularly attractive for allogeneic cell-based therapies. Accordingly, we confirmed acceptance of PSCs in MHC-matched allotransplantation. Cardiomyocyte derivation from PSCs and ESCs was equally effective. The use of cardiomyocyte-restricted GFP enabled cell sorting and documentation of advanced structural and functional maturation in vitro and in vivo. This included seamless electrical integration of PSC-derived cardiomyocytes into recipient myocardium. Finally, we enriched cardiomyocytes to facilitate engineering of force-generating myocardium and demonstrated the utility of this technique in enhancing regional myocardial function after myocardial infarction. Collectively, our data demonstrate pluripotency, with unrestricted cardiogenicity in PSCs, and introduce this unique cell type as an attractive source for tissue-engineered heart repair.


Circulation | 2007

Development of a Biological Ventricular Assist Device Preliminary Data From a Small Animal Model

Yalin Yildirim; Hiroshi Naito; Michael Didié; Bijoy Chandapillai Karikkineth; Daniel Biermann; Thomas Eschenhagen; Wolfram-Hubertus Zimmermann

Background— Engineered heart tissue (EHT) can be generated from cardiomyocytes and extracellular matrix proteins and used to repair local heart muscle defects in vivo. Here, we hypothesized that pouch-like heart muscle constructs can be generated by using a novel EHT-casting technology and applied as heart-embracing cardiac grafts in vivo. Methods and Results— Pouch-like EHTs (inner/outer diameter: 10/12 mm) can be generated mainly from neonatal rat heart cells, collagen type I, and serum containing culture medium. They contain a dense network of connexin 43 interconnected cardiomyocytes and an endo-/epicardial surface lining composed of prolylhydroxylase positive cells. Pouch-like EHTs beat spontaneously and show contractile properties of native heart muscle including positive inotropic responses to calcium and isoprenaline. First implantation studies indicate that pouch-like EHTs can be slipped over uninjured adult rat hearts to completely cover the left and right ventricles. Fourteen days after implantation, EHT-grafts stably covered the epicardial surface of the respective hearts. Engrafted EHTs were composed of matrix and differentiated cardiac muscle as well as newly formed vessels which were partly donor-derived. Conclusions— Pouch-like EHTs can be generated with structural and functional properties of native myocardium. Implantation studies demonstrated their applicability as cardiac muscle grafts, setting the stage for an evaluation of EHT-pouches as biological ventricular assist devices in vivo.


Circulation Research | 2008

Isoprostanes Inhibit Vascular Endothelial Growth Factor–Induced Endothelial Cell Migration, Tube Formation, and Cardiac Vessel Sprouting In Vitro, As Well As Angiogenesis In Vivo via Activation of the Thromboxane A2 Receptor

Ralf A. Benndorf; Edzard Schwedhelm; Anke Gnann; Raihana Taheri; Ghainsom D. Kom; Michael Didié; Anna Steenpass; Süleyman Ergün; Rainer H. Böger

Isoprostanes are endogenously formed end products of lipid peroxidation. Furthermore, they are markers of oxidative stress and independent risk markers of coronary heart disease. In patients experiencing coronary heart disease, impaired angiogenesis may exacerbate insufficient blood supply of ischemic myocardium. We therefore hypothesized that isoprostanes may exert detrimental cardiovascular effects by inhibiting angiogenesis. We studied the effect of isoprostanes on vascular endothelial growth factor (VEGF)-induced migration and tube formation of human endothelial cells (ECs), and cardiac angiogenesis in vitro as well as on VEGF-induced angiogenesis in the chorioallantoic membrane assay in vivo. The isoprostanes 8-iso-PGF2α, 8-iso-PGE2, and 8-iso-PGA2 inhibited VEGF-induced migration, tube formation of ECs, and cardiac angiogenesis in vitro, as well as VEGF-induced angiogenesis in vivo via activation of the thromboxane A2 receptor (TBXA2R): the specific TBXA2R antagonists SQ-29548, BM 567, and ICI 192,605 but not the thromboxane A2 synthase inhibitor ozagrel blocked the effect of isoprostanes. The isoprostane 8-iso-PGA2 degraded into 2 biologically active derivatives in vitro, which also inhibited EC tube formation via the TBXA2R. Moreover, short hairpin RNA–mediated knockdown of the TBXA2R antagonized isoprostane-induced effects. In addition, Rho kinase inhibitor Y-27632 reversed the inhibitory effect of isoprostanes and the thromboxane A2 mimetic U-46619 on EC migration and tube formation. Finally, the various isoprostanes exerted a synergistic inhibitory effect on EC tube formation. We demonstrate for the first time that isoprostanes inhibit angiogenesis via activation of the TBXA2R. By this mechanism, isoprostanes may contribute directly to exacerbation of coronary heart disease and to capillary rarefaction in disease states of increased oxidative stress.


Circulation Research | 2010

A Common MLP (Muscle LIM Protein) Variant Is Associated With Cardiomyopathy

Ralph Knöll; Sawa Kostin; Stefanie Klede; K. Savvatis; Lars Klinge; Ina Stehle; Sylvia Gunkel; Sebastian Kötter; Kamila Babicz; Melanie Sohns; Snjezana Miocic; Michael Didié; Gudrun Knöll; Wolfram-Hubertus Zimmermann; Paul Thelen; Heike Bickeböller; Lars S. Maier; Wolfgang Schaper; Jutta Schaper; Theresia Kraft; Carsten Tschöpe; Wolfgang A. Linke; Kenneth R. Chien

Rationale: We previously discovered the human 10T→C (Trp4Arg) missense mutation in exon 2 of the muscle LIM protein (MLP, CSRP3) gene. Objective: We sought to study the effects of this single-nucleotide polymorphism in the in vivo situation. Methods and Results: We now report the generation and detailed analysis of the corresponding MlpW4R/+ and MlpW4R/W4R knock-in animals, which develop an age- and gene dosage–dependent hypertrophic cardiomyopathy and heart failure phenotype, characterized by almost complete loss of contractile reserve under catecholamine induced stress. In addition, evidence for skeletal muscle pathology, which might have implications for human mutation carriers, was observed. Importantly, we found significantly reduced MLP mRNA and MLP protein expression levels in hearts of heterozygous and homozygous W4R-MLP knock-in animals. We also detected a weaker in vitro interaction of telethonin with W4R-MLP than with wild-type MLP. These alterations may contribute to an increased nuclear localization of W4R-MLP, which was observed by immunohistochemistry. Conclusions: Given the well-known high frequency of this mutation in Caucasians of up to 1%, our data suggest that W4R-MLP might contribute significantly to human cardiovascular disease.


Circulation Research | 2011

Telethonin Deficiency Is Associated With Maladaptation to Biomechanical Stress in the Mammalian Heart

Ralph Knöll; Wolfgang A. Linke; Peijian Zou; Snježana Miočic; Sawa Kostin; Byambajav Buyandelger; Ching Hsin Ku; Stefan Neef; Monika Bug; Katrin Schäfer; Gudrun Knöll; Leanne E. Felkin; Johannes Wessels; Karl Toischer; Franz Hagn; Horst Kessler; Michael Didié; Thomas Quentin; Lars S. Maier; Nils Teucher; Bernhard Unsöld; Albrecht Schmidt; E.J. Birks; Sylvia Gunkel; Patrick Lang; Henk Granzier; Wolfram-Hubertus Zimmermann; Loren J. Field; Georgine Faulkner; Matthias Dobbelstein

Rationale: Telethonin (also known as titin-cap or t-cap) is a 19-kDa Z-disk protein with a unique &bgr;-sheet structure, hypothesized to assemble in a palindromic way with the N-terminal portion of titin and to constitute a signalosome participating in the process of cardiomechanosensing. In addition, a variety of telethonin mutations are associated with the development of several different diseases; however, little is known about the underlying molecular mechanisms and telethonins in vivo function. Objective: Here we aim to investigate the role of telethonin in vivo and to identify molecular mechanisms underlying disease as a result of its mutation. Methods and Results: By using a variety of different genetically altered animal models and biophysical experiments we show that contrary to previous views, telethonin is not an indispensable component of the titin-anchoring system, nor is deletion of the gene or cardiac specific overexpression associated with a spontaneous cardiac phenotype. Rather, additional titin-anchorage sites, such as actin–titin cross-links via &agr;-actinin, are sufficient to maintain Z-disk stability despite the loss of telethonin. We demonstrate that a main novel function of telethonin is to modulate the turnover of the proapoptotic tumor suppressor p53 after biomechanical stress in the nuclear compartment, thus linking telethonin, a protein well known to be present at the Z-disk, directly to apoptosis (“mechanoptosis”). In addition, loss of telethonin mRNA and nuclear accumulation of this protein is associated with human heart failure, an effect that may contribute to enhanced rates of apoptosis found in these hearts. Conclusions: Telethonin knockout mice do not reveal defective heart development or heart function under basal conditions, but develop heart failure following biomechanical stress, owing at least in part to apoptosis of cardiomyocytes, an effect that may also play a role in human heart failure.

Collaboration


Dive into the Michael Didié's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wh Zimmermann

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerd Hasenfuss

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge