Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Druzin is active.

Publication


Featured researches published by Michael Druzin.


Behavioural Brain Research | 2000

The effects of local application of D2 selective dopaminergic drugs into the medial prefrontal cortex of rats in a delayed spatial choice task

Michael Druzin; Natalia P Kurzina; Evgenya Malinina; Andrej P Kozlov

The study examined the effects of modulation of dopamine D2 receptors-mediated neurotransmission in the rats prefrontal cortex (PFC) on storage and executive components of working memory. Rats were trained on delayed (delay interval, 3 s) and non-delayed choice in a U-maze. The prominence of proactive interference was evaluated by sorting errors in a current trial on the basis of animal reactions in a preceding trial. The erroneous runs to the same arm of the maze as in the previous trial were identified as the repetitions (RE) and the erroneous runs to the other arm in comparison with the previous trial were classified as alternations (AE). The bilateral microinfusion of D2 agonists PPHT (0.004 microg, 0.04 microg, 0.4 microg/1 microl) into medial wall of the PFC produced a dose-dependent increase in the error rate of the delayed-response task and did not influence non-delayed choice. In delay condition PPHT enhanced the perseverative tendencies (the rate of RE was significantly higher than the rate of AE), in non-delayed choice the erroneous performance was mainly represented by AE. In contrast, the infusion of D2-receptor antagonist sulpiride (0.03 microg, 0.3 microg, 3 microg/1 microl) increased the accuracy of delayed choice and changed the mode of intertrial dependence-rats made significantly more AE than RE. The results are discussed in terms of the involvement of D2 receptor dependent transmission of the PFC in different cognitive processes related to the delayed performance in U-maze (within-trial short-term storage of information versus dynamic control of between-trials working memory processing).


Brain Research | 2002

Allopregnanolone modulates spontaneous GABA release via presynaptic Cl- permeability in rat preoptic nerve terminals

David Haage; Michael Druzin; Staffan Johansson

The endogenous neurosteroid 3alpha-hydroxy-5alpha-pregnane-20-one (allopregnanolone) affects presynaptic nerve terminals and thereby increases the frequency of spontaneous GABA release. The present study aimed at clarifying the mechanisms underlying this presynaptic neurosteroid action, by recording the frequency of spontaneous GABA-mediated inhibitory postsynaptic currents (sIPSCs) in neurons from the medial preoptic nucleus (MPN) of rat. Acutely dissociated neurons with functional adhering nerve terminals were studied by perforated-patch recording under voltage-clamp conditions. It was shown that the sIPSC frequency increased with the external K(+) concentration ([K(+)](o)). Further, the effect of allopregnanolone on the sIPSC frequency was strongly dependent on [K(+)](o). In a [K(+)](o) of 5 mM, 2.0 microM allopregnanolone caused a clear increase in sIPSC frequency. However, the effect declined rapidly with increased [K(+)](o) and at high [K(+)](o) allopregnanolone reduced the sIPSC frequency. The effect of allopregnanolone was also strongly dependent on the external Cl(-) concentration ([Cl(-)](o)). In a reduced [Cl(-)](o) (40 mM, but with a standard [K(+)](o) of 5 mM), the effect on sIPSC frequency was larger than that in the standard [Cl(-)](o) of 146 mM. The dependence of the effect of allopregnanolone on [K(+)](o) and on estimated presynaptic membrane potential was also altered by the reduction in [Cl(-)](o). As in standard [Cl(-)](o), the effect in low [Cl(-)](o) declined when [K(+)](o) was raised, but reversed at a higher [K(+)](o). The GABA(A) receptor agonist muscimol also potentiated the sIPSC frequency. Altogether, the results suggest that allopregnanolone exerts its presynaptic effect by increasing the presynaptic Cl(-) permeability, most likely via GABA(A) receptors.


The Journal of General Physiology | 2011

Cl− concentration changes and desensitization of GABAA and glycine receptors

Urban Karlsson; Michael Druzin; Staffan Johansson

Desensitization of ligand-gated ion channels plays a critical role for the information transfer between neurons. The current view on γ-aminobutyric acid (GABA)A and glycine receptors includes significant rapid components of desensitization as well as cross-desensitization between the two receptor types. Here, we analyze the mechanism of apparent cross-desensitization between native GABAA and glycine receptors in rat central neurons and quantify to what extent the current decay in the presence of ligand is a result of desensitization versus changes in intracellular Cl− concentration ([Cl−]i). We show that apparent cross-desensitization of currents evoked by GABA and by glycine is caused by changes in [Cl−]i. We also show that changes in [Cl−]i are critical for the decay of current in the presence of either GABA or glycine, whereas changes in conductance often play a minor role only. Thus, the currents decayed significantly quicker than the conductances, which decayed with time constants of several seconds and in some cells did not decay below the value at peak current during 20-s agonist application. By taking the cytosolic volume into account and numerically computing the membrane currents and expected changes in [Cl−]i, we provide a theoretical framework for the observed effects. Modeling diffusional exchange of Cl− between cytosol and patch pipettes, we also show that considerable changes in [Cl−]i may be expected and cause rapidly decaying current components in conventional whole cell or outside-out patch recordings. The findings imply that a reevaluation of the desensitization properties of GABAA and glycine receptors is needed.


The Journal of Physiology | 2002

Dual and opposing roles of presynaptic Ca2+ influx for spontaneous GABA release from rat medial preoptic nerve terminals

Michael Druzin; David Haage; Evgenya Malinina; Staffan Johansson

Calcium influx into the presynaptic nerve terminal is well established as a trigger signal for transmitter release by exocytosis. By studying dissociated preoptic neurons with functional adhering nerve terminals, we here show that presynaptic Ca2+ influx plays dual and opposing roles in the control of spontaneous transmitter release. Thus, application of various Ca2+ channel blockers paradoxically increased the frequency of spontaneous (miniature) inhibitory GABA‐mediated postsynaptic currents (mIPSCs). Similar effects on mIPSC frequency were recorded upon washout of Cd2+ or EGTA from the external solution. The results are explained by a model with parallel Ca2+ influx through channels coupled to the exocytotic machinery and through channels coupled to Ca2+‐activated K+ channels at a distance from the release site.


PLOS ONE | 2011

Mechanism of Estradiol-Induced Block of Voltage-Gated K + Currents in Rat Medial Preoptic Neurons

Michael Druzin; Evgenya Malinina; Ola Grimsholm; Staffan Johansson

The present study was conducted to characterize possible rapid effects of 17-β-estradiol on voltage-gated K+ channels in preoptic neurons and, in particular, to identify the mechanisms by which 17-β-estradiol affects the K+ channels. Whole-cell currents from dissociated rat preoptic neurons were studied by perforated-patch recording. 17-β-estradiol rapidly (within seconds) and reversibly reduced the K+ currents, showing an EC50 value of 9.7 µM. The effect was slightly voltage dependent, but independent of external Ca2+, and not sensitive to an estrogen-receptor blocker. Although 17-α-estradiol also significantly reduced the K+ currents, membrane-impermeant forms of estradiol did not reduce the K+ currents and other estrogens, testosterone and cholesterol were considerably less effective. The reduction induced by estradiol was overlapping with that of the KV-2-channel blocker r-stromatoxin-1. The time course of K+ current in 17-β-estradiol, with a time-dependent inhibition and a slight dependence on external K+, suggested an open-channel block mechanism. The properties of block were predicted from a computational model where 17-β-estradiol binds to open K+ channels. It was concluded that 17-β-estradiol rapidly reduces voltage-gated K+ currents in a way consistent with an open-channel block mechanism. This suggests a new mechanism for steroid action on ion channels.


Neuropharmacology | 2004

Bicuculline free base blocks voltage-activated K+ currents in rat medial preoptic neurons.

Michael Druzin; David Haage; Staffan Johansson

The effects of the well-known GABA(A)-receptor blocker bicuculline on voltage-gated K(+) currents were studied in neurons from the medial preoptic nucleus (MPN) of rat. Whole-cell currents were recorded using the perforated-patch technique. Voltage steps from -54 to +6 mV resulted in tetraethylammonium-sensitive K(+) currents of delayed rectifier type. The total K(+) current (at 300 ms), including Ca(2+)-dependent and Ca(2+)-independent components, was reversibly reduced (17 +/- 4%) by 100 microM bicuculline methiodide and (37 +/- 5%) by 100 microM bicuculline as free base. The Ca(2+)-independent fraction (77 +/- 2%) of K(+) current evoked by a voltage step was, however, reduced (54 +/- 6%) only by bicuculline free base, but was not affected by bicuculline methiodide. The half-saturating concentration of bicuculline free base for blocking this purely voltage-gated K(+) current was 113 microM, whereas for blocking a steady Ca(2+)-dependent K(+) current it was 36 microM. The bicuculline-sensitive voltage-gated K(+) current was composed of 4-AP-sensitive and 4-AP-resistant components with different kinetic properties. No component of the purely voltage-gated K(+) current was affected neither by 100 nM alpha-dendrotoxin nor by 100 nM I-dendrotoxin. The possible K(+)-channel subtypes mediating the bicuculline-sensitive current in MPN neurons are discussed.


Journal of Neurophysiology | 2010

Spontaneous ryanodine-receptor-dependent Ca2+-activated K+ currents and hyperpolarizations in rat medial preoptic neurons.

Göran Klement; Michael Druzin; David Haage; Evgenya Malinina; Peter Århem; Staffan Johansson

The aim of the present study was to clarify the identity of slow spontaneous currents, the underlying mechanism and possible role for impulse generation in neurons of the rat medial preoptic nucleus (MPN). Acutely dissociated neurons were studied with the perforated patch-clamp technique. Spontaneous outward currents, at a frequency of approximately 0.5 Hz and with a decay time constant of approximately 200 ms, were frequently detected in neurons when voltage-clamped between approximately -70 and -30 mV. The dependence on extracellular K(+) concentration was consistent with K(+) as the main charge carrier. We concluded that the main characteristics were similar to those of spontaneous miniature outward currents (SMOCs), previously reported mainly for muscle fibers and peripheral nerve. From the dependence on voltage and from a pharmacological analysis, we concluded that the currents were carried through small-conductance Ca(2+)-activated (SK) channels, of the SK3 subtype. From experiments with ryanodine, xestospongin C, and caffeine, we concluded that the spontaneous currents were triggered by Ca(2+) release from intracellular stores via ryanodine receptor channels. An apparent voltage dependence was explained by masking of the spontaneous currents as a consequence of steady SK-channel activation at membrane potentials > -30 mV. Under current-clamp conditions, corresponding transient hyperpolarizations occasionally exceeded 10 mV in amplitude and reduced the frequency of spontaneous impulses. In conclusion, MPN neurons display spontaneous hyperpolarizations triggered by Ca(2+) release via ryanodine receptors and SK3-channel activation. Thus such events may affect impulse firing of MPN neurons.


Brain Research | 2005

Fast neurotransmission in the rat medial preoptic nucleus.

Evgenya Malinina; Michael Druzin; Staffan Johansson

The functional properties of neurotransmission in the medial preoptic nucleus (MPN) were studied in a brain slice preparation from young male rats. The aims were to evaluate the thin slice preparation for studying evoked synaptic responses in MPN neurons, to characterize the fast responses triggered by activation of presynaptic nerve fibers in the MPN, and to identify the involved receptor types. Presynaptic stimulation within the MPN evoked postsynaptic voltage and current responses that were blocked by 200 microM Cd2+ or by 2.0 microM tetrodotoxin and were attributed to action potential-evoked transmitter release. The relation to stimulus strength and comparison with spontaneous synaptic currents suggested that in many cases only one presynaptic nerve fiber was excited by the stimulus. Furthermore, the transmission was probabilistic in nature, with frequent failures. Thus, response probability, most likely reflecting transmitter release probability, could be evaluated in the thin slice preparation. Evoked excitatory postsynaptic currents recorded under voltage-clamp conditions were, due to kinetics, I-V relation, and pharmacological properties, attributed to AMPA/kainate receptors and NMDA receptors, whereas inhibitory currents were attributed to GABAA receptors. No responses that could be attributed to glycine or other types of primary transmitters were detected. Although serotonin (5-HT) did not appear to function as a primary transmitter, glutamate- as well as GABA-mediated transmission was suppressed by 500 microM 5-HT, with a clear reduction in response probability observed. 5-HT also reduced the frequency, but not the amplitude, of spontaneous postsynaptic currents and was therefore ascribed a presynaptic site of action.


Brain Research | 2006

Short-term plasticity in excitatory synapses of the rat medial preoptic nucleus.

Evgenya Malinina; Michael Druzin; Staffan Johansson

The medial preoptic nucleus (MPN) regulates sexual behavior which is subject to experience-dependent modifications. Such modifications must depend on functional plasticity in the controlling neural circuits. Thus, MPN synapses are likely candidates for the site of alterations. The present work is a first systematic study of functional synaptic plasticity at glutamatergic synapses in the MPN. Short-term activity-dependent plasticity was investigated using a slice preparation from young male rats. The average efficacy of AMPA/kainate-receptor-mediated synaptic transmission was activity-dependent, showing a peak at a steady stimulation rate of 2 Hz. The variation in efficacy was attributed to mainly presynaptic factors since the average response amplitude was roughly paralleled by the response probability. Upon paired-pulse stimulation, paired-pulse facilitation as well as paired-pulse depression was observed. In some cases, paired-pulse facilitation as well as paired-pulse depression was recorded from an individual neuron depending on the interval between the paired stimuli. On average, paired-pulse facilitation was observed at intervals <500 ms, and paired-pulse depression at intervals in the range 1-4 s. The findings thus reveal complex activity-dependent short-term plasticity of the functional synaptic properties in the medial preoptic nucleus.


Frontiers in Cellular Neuroscience | 2016

How to Properly Measure a Current-Voltage Relation?—Interpolation vs. Ramp Methods Applied to Studies of GABAA Receptors

Tushar D. Yelhekar; Michael Druzin; Urban Karlsson; Erii Blomqvist; Staffan Johansson

The relation between current and voltage, I-V relation, is central to functional analysis of membrane ion channels. A commonly used method, since the introduction of the voltage-clamp technique, to establish the I-V relation depends on the interpolation of current amplitudes recorded at different steady voltages. By a theoretical computational approach as well as by experimental recordings from GABAA-receptor mediated currents in mammalian central neurons, we here show that this interpolation method may give reversal potentials and conductances that do not reflect the properties of the channels studied under conditions when ion flux may give rise to concentration changes. Therefore, changes in ion concentrations may remain undetected and conclusions on changes in conductance, such as during desensitization, may be mistaken. In contrast, an alternative experimental approach, using rapid voltage ramps, enable I-V relations that much better reflect the properties of the studied ion channels.

Collaboration


Dive into the Michael Druzin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerstin Ramser

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar

Nazanin Bitaraf

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmed Alrifaiy

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmed Ahmed

Luleå University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge