Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael E. Cahill is active.

Publication


Featured researches published by Michael E. Cahill.


Nature Neuroscience | 2011

Dendritic spine pathology in neuropsychiatric disorders

Peter Penzes; Michael E. Cahill; Kelly A. Jones; Jon Eric VanLeeuwen; Kevin M. Woolfrey

Substantial progress has been made toward understanding the genetic architecture, cellular substrates, brain circuits and endophenotypic profiles of neuropsychiatric disorders, including autism spectrum disorders (ASD), schizophrenia and Alzheimers disease. Recent evidence implicates spiny synapses as important substrates of pathogenesis in these disorders. Although synaptic perturbations are not the only alterations relevant for these diseases, understanding the molecular underpinnings of spine pathology may provide insight into their etiologies and may reveal new drug targets. Here we discuss recent neuropathological, genetic, molecular and animal model studies that implicate structural alterations at spiny synapses in the pathogenesis of major neurological disorders, focusing on ASD, schizophrenia and Alzheimers disease as representatives of these categories across different ages of onset. We stress the importance of reverse translation, collaborative and multidisciplinary approaches, and the study of the spatio-temporal roles of disease molecules in the context of synaptic regulatory pathways and neuronal circuits that underlie disease endophenotypes.


Neuron | 2007

Kalirin-7 Controls Activity-Dependent Structural and Functional Plasticity of Dendritic Spines

Zhong Xie; Deepak P. Srivastava; Huzefa Photowala; Li Kai; Michael E. Cahill; Kevin M. Woolfrey; Cassandra Y. Shum; D. James Surmeier; Peter Penzes

Activity-dependent rapid structural and functional modifications of central excitatory synapses contribute to synapse maturation, experience-dependent plasticity, and learning and memory and are associated with neurodevelopmental and psychiatric disorders. However, the signal transduction mechanisms that link glutamate receptor activation to intracellular effectors that accomplish structural and functional plasticity are not well understood. Here we report that NMDA receptor activation in pyramidal neurons causes CaMKII-dependent phosphorylation of the guanine-nucleotide exchange factor (GEF) kalirin-7 at residue threonine 95, regulating its GEF activity, leading to activation of small GTPase Rac1 and rapid enlargement of existing spines. Kalirin-7 also interacts with AMPA receptors and controls their synaptic expression. By demonstrating that kalirin expression and spine localization are required for activity-dependent spine enlargement and enhancement of AMPAR-mediated synaptic transmission, our study identifies a signaling pathway that controls structural and functional spine plasticity.


Neurobiology of Aging | 2005

Tau truncation during neurofibrillary tangle evolution in Alzheimer's disease.

Angela L. Guillozet-Bongaarts; Francisco García-Sierra; Matthew R. Reynolds; Peleg M. Horowitz; Yifan Fu; Tianyi Wang; Michael E. Cahill; Eileen H. Bigio; Robert W. Berry; Lester I. Binder

The microtubule-associated protein, tau, is a highly soluble molecule that is nonetheless capable of self-association into filamentous deposits characteristic of a number of neurodegenerative diseases. This state change is thought to be driven by phosphorylation and/or C-terminal truncation events resulting in intracellular inclusions, such as the neurofibrillary tangles (NFTs) in Alzheimers disease (AD). Previously, we reported the existence of a novel truncation event, cleavage at aspartic acid(421), presumably by a caspase, and also described a monoclonal antibody (Tau-C3) specific for tau cleaved at this site. Here, we report the timing of this cleavage event relative to other antibody-targeted alterations in the tau molecule during the course of NFT evolution in AD. Immunohistochemical studies indicate that cleavage at aspartic acid(421) occurs after formation of the Alz50 epitope but prior to formation of the Tau-66 epitope and truncation at glutamic acid(391) (formation of the MN423 epitope). Thus, creation of the Tau-C3 epitope appears to occur relatively early in the disease state, contemporaneous with the initial Alz50 folding event that heralds the appearance of filamentous tau in NFTs, neuropil threads, and the dystrophic neurites surrounding amyloid plaques.


Nature Medicine | 2013

Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression

Sam A. Golden; Daniel J. Christoffel; Mitra Heshmati; Georgia E. Hodes; Jane Magida; Keithara Davis; Michael E. Cahill; Caroline Dias; Efrain Ribeiro; Jessica L. Ables; Pamela J. Kennedy; Alfred J. Robison; Javier González-Maeso; Rachael L. Neve; Gustavo Turecki; Subroto Ghose; Carol A. Tamminga; Scott J. Russo

Depression induces structural and functional synaptic plasticity in brain reward circuits, although the mechanisms promoting these changes and their relevance to behavioral outcomes are unknown. Transcriptional profiling of the nucleus accumbens (NAc) for Rho GTPase–related genes, which are known regulators of synaptic structure, revealed a sustained reduction in RAS-related C3 botulinum toxin substrate 1 (Rac1) expression after chronic social defeat stress. This was associated with a repressive chromatin state surrounding the proximal promoter of Rac1. Inhibition of class 1 histone deacetylases (HDACs) with MS-275 rescued both the decrease in Rac1 transcription after social defeat stress and depression-related behavior, such as social avoidance. We found a similar repressive chromatin state surrounding the RAC1 promoter in the NAc of subjects with depression, which corresponded with reduced RAC1 transcription. Viral-mediated reduction of Rac1 expression or inhibition of Rac1 activity in the NAc increases social defeat–induced social avoidance and anhedonia in mice. Chronic social defeat stress induces the formation of stubby excitatory spines through a Rac1-dependent mechanism involving the redistribution of synaptic cofilin, an actin-severing protein downstream of Rac1. Overexpression of constitutively active Rac1 in the NAc of mice after chronic social defeat stress reverses depression-related behaviors and prunes stubby spines. Taken together, our data identify epigenetic regulation of RAC1 in the NAc as a disease mechanism in depression and reveal a functional role for Rac1 in rodents in regulating stress-related behaviors.Depression involves plasticity of brain reward neurons, although the mechanisms and behavioral relevance are unknown. Transcriptional profiling of nucleus accumbens (NAc) for RhoGTPase related genes, known regulators of synaptic structure, following chronic social defeat stress, revealed a long-term reduction in Rac1 transcription. This was marked by a repressive chromatin state surrounding its proximal promoter. Inhibition of class 1 HDACs with MS-275 rescued both decreased Rac1 transcription and social avoidance behavior. A similar repressive chromatin state was found surrounding the Rac1 promoter in human postmortem NAc from depressed subjects, which corresponded with reduced Rac1 transcription. We show Rac1 is necessary and sufficient for social avoidance and anhedonia, and the formation of stubby excitatory spines by redistributing synaptic cofilin, an actin severing protein downstream of Rac1. Our data identifies epigenetic regulation of Rac1 in NAc as a bona fide disease mechanism in depression and reveals a functional role in regulating stress-related behaviors.


Nature Neuroscience | 2009

Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines

Kevin M. Woolfrey; Deepak P. Srivastava; Huzefa Photowala; Megumi Yamashita; Maria V. Barbolina; Michael E. Cahill; Zhong Xie; Kelly A. Jones; Lawrence A. Quilliam; Murali Prakriya; Peter Penzes

Dynamic remodeling of spiny synapses is crucial for cortical circuit development, refinement and plasticity, whereas abnormal morphogenesis is associated with neuropsychiatric disorders. We found that activation of Epac2, a PKA-independent cAMP target and Rap guanine-nucleotide exchange factor (GEF), in cultured rat cortical neurons induced spine shrinkage, increased spine motility, removed synaptic GluR2/3-containing AMPA receptors and depressed excitatory transmission, whereas its inhibition promoted spine enlargement and stabilization. Epac2 was required for dopamine D1-like receptor–dependent spine shrinkage and GluR2 removal from spines. Epac2 interaction with neuroligin promoted its membrane recruitment and enhanced its GEF activity. Rare missense mutations in the EPAC2 (also known as RAPGEF4) gene, previously found in individuals with autism, affected basal and neuroligin-stimulated GEF activity, dendritic Rap signaling, synaptic protein distribution and spine morphology. Thus, we identify a previously unknown mechanism that promotes dynamic remodeling and depression of spiny synapses, disruption of which may contribute to some aspects of disease.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes

Michael E. Cahill; Zhong Xie; Michelle Day; Huzefa Photowala; Maria V. Barbolina; Courtney A. Miller; Craig Weiss; Jelena Radulovic; J. David Sweatt; John F. Disterhoft; D. James Surmeier; Peter Penzes

Dendritic spine morphogenesis contributes to brain function, cognition, and behavior, and is altered in psychiatric disorders. Kalirin is a brain-specific guanine-nucleotide exchange factor (GEF) for Rac-like GTPases and is a key regulator of spine morphogenesis. Here, we show that KALRN-knockout mice have specific reductions in cortical, but not hippocampal, Rac1 signaling and spine density, and exhibit reduced cortical glutamatergic transmission. These mice exhibit robust deficits in working memory, sociability, and prepulse inhibition, paralleled by locomotor hyperactivity reversible by clozapine in a kalirin-dependent manner. Several of these deficits are delayed and age-dependent. Our study thus links spine morphogenic signaling with age-dependent, delayed, disease-related phenotypes, including cognitive dysfunction.


The Journal of Neuroscience | 2014

Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecystokinin: Role of ΔFosB

Vincent Vialou; Rosemary C. Bagot; Michael E. Cahill; Deveroux Ferguson; Alfred J. Robison; David M. Dietz; Barbara Fallon; Michelle S. Mazei-Robison; Stacy M. Ku; Eileen Harrigan; Catherine A. Winstanley; Tej Joshi; Jian Feng; Olivier Berton; Eric J. Nestler

Decreased medial prefrontal cortex (mPFC) neuronal activity is associated with social defeat-induced depression- and anxiety-like behaviors in mice. However, the molecular mechanisms underlying the decreased mPFC activity and its prodepressant role remain unknown. We show here that induction of the transcription factor ΔFosB in mPFC, specifically in the prelimbic (PrL) area, mediates susceptibility to stress. ΔFosB induction in PrL occurred selectively in susceptible mice after chronic social defeat stress, and overexpression of ΔFosB in this region, but not in the nearby infralimbic (IL) area, enhanced stress susceptibility. ΔFosB produced these effects partly through induction of the cholecystokinin (CCK)-B receptor: CCKB blockade in mPFC induces a resilient phenotype, whereas CCK administration into mPFC mimics the anxiogenic- and depressant-like effects of social stress. We previously found that optogenetic stimulation of mPFC neurons in susceptible mice reverses several behavioral abnormalities seen after chronic social defeat stress. Therefore, we hypothesized that optogenetic stimulation of cortical projections would rescue the pathological effects of CCK in mPFC. After CCK infusion in mPFC, we optogenetically stimulated mPFC projections to basolateral amygdala or nucleus accumbens, two subcortical structures involved in mood regulation. Stimulation of corticoamygdala projections blocked the anxiogenic effect of CCK, although no effect was observed on other symptoms of social defeat. Conversely, stimulation of corticoaccumbens projections reversed CCK-induced social avoidance and sucrose preference deficits but not anxiogenic-like effects. Together, these results indicate that social stress-induced behavioral deficits are mediated partly by molecular adaptations in mPFC involving ΔFosB and CCK through cortical projections to distinct subcortical targets.


Nature Neuroscience | 2012

Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons.

David M. Dietz; HaoSheng Sun; Mary Kay Lobo; Michael E. Cahill; Benjamin Chadwick; Virginia Gao; Ja Wook Koo; Michelle S. Mazei-Robison; Caroline Dias; Ian Maze; Diane Damez-Werno; Karen Dietz; Kimberly N. Scobie; Deveroux Ferguson; Daniel J. Christoffel; Yoko H. Ohnishi; Georgia E. Hodes; Yi Zheng; Rachael L. Neve; Klaus M. Hahn; Scott J. Russo; Eric J. Nestler

Repeated cocaine administration increases the dendritic arborization of nucleus accumbens neurons, but the underlying signaling events remain unknown. Here we show that repeated exposure to cocaine negatively regulates the active form of Rac1, a small GTPase that controls actin remodeling in other systems. Further, we show, using viral-mediated gene transfer, that overexpression of a dominant negative mutant of Rac1 or local knockout of Rac1 is sufficient to increase the density of immature dendritic spines on nucleus accumbens neurons, whereas overexpression of a constitutively active Rac1 or light activation of a photoactivatable form of Rac1 blocks the ability of repeated cocaine exposure to produce this effect. Downregulation of Rac1 activity likewise promotes behavioral responses to cocaine exposure, with activation of Rac1 producing the opposite effect. These findings establish that Rac1 signaling mediates structural and behavioral plasticity in response to cocaine exposure.


Trends in Cell Biology | 2008

Convergent CaMK and RacGEF signals control dendritic structure and function

Peter Penzes; Michael E. Cahill; Kelly A. Jones; Deepak P. Srivastava

Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity and behavior, and its malfunction underlies many neurodevelopmental and psychiatric disorders. However, the molecular mechanisms that control dendritic spine morphogenesis have only recently emerged. We summarize recent work that has revealed an important connection between calcium/calmodulin-dependent kinases (CaMKs) and guanine-nucleotide-exchange factors (GEFs) that activate the small GTPase Rac (RacGEFs) in controlling dendritic spine morphogenesis. These two groups of molecules function in neurons as a unique signaling cassette that transduces calcium influx into small GTPase activity and, thence, actin reorganization and spine morphogenesis. Through this pathway, CaMKs and RacGEFs amplify calcium signals and translate them into spatially and temporally regulated structural remodeling of dendritic spines.


Nature Neuroscience | 2015

Role of Tet1 and 5-hydroxymethylcytosine in cocaine action

Jian Feng; Ningyi Shao; Keith E. Szulwach; Vincent Vialou; Jimmy Huynh; Chun Zhong; Thuc Le; Deveroux Ferguson; Michael E. Cahill; Yujing Li; Ja Wook Koo; Efrain Ribeiro; Benoit Labonté; Benjamin M. Laitman; David Estey; Victoria Stockman; Pamela J. Kennedy; Thomas Couroussé; Isaac Mensah; Gustavo Turecki; Kym F. Faull; Guo Li Ming; Hongjun Song; Guoping Fan; Patrizia Casaccia; Li Shen; Peng Jin; Eric J. Nestler

Ten-eleven translocation (TET) enzymes mediate the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which is enriched in brain, and its ultimate DNA demethylation. However, the influence of TET and 5hmC on gene transcription in brain remains elusive. We found that ten-eleven translocation protein 1 (TET1) was downregulated in mouse nucleus accumbens (NAc), a key brain reward structure, by repeated cocaine administration, which enhanced behavioral responses to cocaine. We then identified 5hmC induction in putative enhancers and coding regions of genes that have pivotal roles in drug addiction. Such induction of 5hmC, which occurred similarly following TET1 knockdown alone, correlated with increased expression of these genes as well as with their alternative splicing in response to cocaine administration. In addition, 5hmC alterations at certain loci persisted for at least 1 month after cocaine exposure. Together, these reveal a previously unknown epigenetic mechanism of cocaine action and provide new insight into how 5hmC regulates transcription in brain in vivo.

Collaboration


Dive into the Michael E. Cahill's collaboration.

Top Co-Authors

Avatar

Peter Penzes

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Eric J. Nestler

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Zhong Xie

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Rachael L. Neve

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Li Shen

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deena M. Walker

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott J. Russo

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Caroline Dias

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge