Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael E. Cheetham is active.

Publication


Featured researches published by Michael E. Cheetham.


Cell Stress & Chaperones | 2009

Guidelines for the nomenclature of the human heat shock proteins

Harm H. Kampinga; Jurre Hageman; Michel J. Vos; Hiroshi Kubota; Robert M. Tanguay; Elspeth A. Bruford; Michael E. Cheetham; Bin Chen; Lawrence E. Hightower

The expanding number of members in the various human heat shock protein (HSP) families and the inconsistencies in their nomenclature have often led to confusion. Here, we propose new guidelines for the nomenclature of the human HSP families, HSPH (HSP110), HSPC (HSP90), HSPA (HSP70), DNAJ (HSP40), and HSPB (small HSP) as well as for the human chaperonin families HSPD/E (HSP60/HSP10) and CCT (TRiC). The nomenclature is based largely on the more consistent nomenclature assigned by the HUGO Gene Nomenclature Committee and used in the National Center of Biotechnology Information Entrez Gene database for the heat shock genes. In addition to this nomenclature, we provide a list of the human Entrez Gene IDs and the corresponding Entrez Gene IDs for the mouse orthologs.


Nature Genetics | 2005

Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2

Louise A. Metherell; J. Paul Chapple; Sadani N. Cooray; Alessia David; Christian F. W. Becker; Franz Rüschendorf; Danielle Naville; Martine Begeot; Bernard Khoo; Peter Nürnberg; Angela Huebner; Michael E. Cheetham; Adrian J. L. Clark

Familial glucocorticoid deficiency (FGD), or hereditary unresponsiveness to adrenocorticotropin (ACTH; OMIM 202200), is an autosomal recessive disorder resulting from resistance to the action of ACTH on the adrenal cortex, which stimulates glucocorticoid production. Affected individuals are deficient in cortisol and, if untreated, are likely to succumb to hypoglycemia or overwhelming infection in infancy or childhood. Mutations of the ACTH receptor (melanocortin 2 receptor, MC2R) account for ∼25% of cases of FGD. FGD without mutations of MC2R is called FGD type 2. Using SNP array genotyping, we mapped a locus involved in FGD type 2 to chromosome 21q22.1. We identified mutations in a gene encoding a 19-kDa single–transmembrane domain protein, now known as melanocortin 2 receptor accessory protein (MRAP). We show that MRAP interacts with MC2R and may have a role in the trafficking of MC2R from the endoplasmic reticulum to the cell surface.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Targeting amyloid-β in glaucoma treatment

Li Guo; T.E. Salt; Vy Luong; Nicholas W. Wood; William Cheung; Annelie Maass; Giulio Ferrari; Françoise Russo-Marie; Adam M. Sillito; Michael E. Cheetham; Stephen E. Moss; Frederick W. Fitzke; M Francesca Cordeiro

The development of the devastating neurodegenerative condition, Alzheimers disease, is strongly associated with amyloid-β (Aβ) deposition, neuronal apoptosis, and cell loss. Here, we provide evidence that implicates these same mechanisms in the retinal disease glaucoma, a major cause of irreversible blindness worldwide, previously associated simply with the effects of intraocular pressure. We show that Aβ colocalizes with apoptotic retinal ganglion cells (RGC) in experimental glaucoma and induces significant RGC apoptosis in vivo in a dose- and time-dependent manner. We demonstrate that targeting different components of the Aβ formation and aggregation pathway can effectively reduce glaucomatous RGC apoptosis in vivo, and finally, that combining treatments (triple therapy) is more effective than monotherapy. Our work suggests that targeting the Aβ pathway provides a therapeutic avenue in glaucoma management. Furthermore, our work demonstrates that the combination of agents affecting multiple stages in the Aβ pathway may be the most effective strategy in Aβ-related diseases.


Protein Science | 2005

Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions.

Fritha Hennessy; Williams S Nicoll; Richard Zimmermann; Michael E. Cheetham

Heat shock protein 40s (Hsp40s) and heat shock protein 70s (Hsp70s) form chaperone partnerships that are key components of cellular chaperone networks involved in facilitating the correct folding of a broad range of client proteins. While the Hsp40 family of proteins is highly diverse with multiple forms occurring in any particular cell or compartment, all its members are characterized by a J domain that directs their interaction with a partner Hsp70. Specific Hsp40–Hsp70 chaperone partnerships have been identified that are dedicated to the correct folding of distinct subsets of client proteins. The elucidation of the mechanism by which these specific Hsp40–Hsp70 partnerships are formed will greatly enhance our understanding of the way in which chaperone pathways are integrated into finely regulated protein folding networks. From in silico analyses, domain swapping and rational protein engineering experiments, evidence has accumulated that indicates that J domains contain key specificity determinants. This review will critically discuss the current understanding of the structural features of J domains that determine the specificity of interaction between Hsp40 proteins and their partner Hsp70s. We also propose a model in which the J domain is able to integrate specificity and chaperone activity.


Journal of Clinical Investigation | 2006

Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase

Maria Borrell-Pagès; Josep M. Canals; Fabrice P. Cordelières; J. Alex Parker; José R. Pineda; Ghislaine Grange; Elzbieta A. Bryson; Martine Guillermier; Etienne C. Hirsch; Philippe Hantraye; Michael E. Cheetham; Christian Neri; Jordi Alberch; Emmanuel Brouillet; Frédéric Saudou; Sandrine Humbert

There is no treatment for the neurodegenerative disorder Huntington disease (HD). Cystamine is a candidate drug; however, the mechanisms by which it operates remain unclear. We show here that cystamine increases levels of the heat shock DnaJ-containing protein 1b (HSJ1b) that are low in HD patients. HSJ1b inhibits polyQ-huntingtin-induced death of striatal neurons and neuronal dysfunction in Caenorhabditis elegans. This neuroprotective effect involves stimulation of the secretory pathway through formation of clathrin-coated vesicles containing brain-derived neurotrophic factor (BDNF). Cystamine increases BDNF secretion from the Golgi region that is blocked by reducing HSJ1b levels or by overexpressing transglutaminase. We demonstrate that cysteamine, the FDA-approved reduced form of cystamine, is neuroprotective in HD mice by increasing BDNF levels in brain. Finally, cysteamine increases serum levels of BDNF in mouse and primate models of HD. Therefore, cysteamine is a potential treatment for HD, and serum BDNF levels can be used as a biomarker for drug efficacy.


Nature Genetics | 2007

Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis.

Anneke I. den Hollander; Robert K. Koenekoop; M D Mohamed; Heleen H. Arts; Karsten Boldt; Katherine V. Towns; Tina Sedmak; Monika Beer; Kerstin Nagel-Wolfrum; Martin McKibbin; Sharola Dharmaraj; Irma Lopez; Lenka Ivings; G. Williams; Kelly Springell; C. Geoff Woods; Hussain Jafri; Yasmin Rashid; Tim M. Strom; Bert van der Zwaag; Ilse Gosens; Ferry F.J. Kersten; Erwin van Wijk; Joris A. Veltman; Marijke N Zonneveld; Sylvia E. C. van Beersum; Irene H. Maumenee; Uwe Wolfrum; Michael E. Cheetham; Marius Ueffing

Leber congenital amaurosis (LCA) causes blindness or severe visual impairment at or within a few months of birth. Here we show, using homozygosity mapping, that the LCA5 gene on chromosome 6q14, which encodes the previously unknown ciliary protein lebercilin, is associated with this disease. We detected homozygous nonsense and frameshift mutations in LCA5 in five families affected with LCA. In a sixth family, the LCA5 transcript was completely absent. LCA5 is expressed widely throughout development, although the phenotype in affected individuals is limited to the eye. Lebercilin localizes to the connecting cilia of photoreceptors and to the microtubules, centrioles and primary cilia of cultured mammalian cells. Using tandem affinity purification, we identified 24 proteins that link lebercilin to centrosomal and ciliary functions. Members of this interactome represent candidate genes for LCA and other ciliopathies. Our findings emphasize the emerging role of disrupted ciliary processes in the molecular pathogenesis of LCA.


Proceedings of the National Academy of Sciences of the United States of America | 2009

MRAP and MRAP2 are bidirectional regulators of the melanocortin receptor family

Li F. Chan; Tom R. Webb; Teng-Teng Chung; Eirini Meimaridou; Sadani N. Cooray; Leonardo Guasti; Jp Chapple; Michaela Egertová; Maurice R. Elphick; Michael E. Cheetham; Louise A. Metherell; Adrian J. L. Clark

The melanocortin receptor (MCR) family consists of 5 G protein-coupled receptors (MC1R–MC5R) with diverse physiologic roles. MC2R is a critical component of the hypothalamic–pituitary–adrenal axis, whereas MC3R and MC4R have an essential role in energy homeostasis. Mutations in MC4R are the single most common cause of monogenic obesity. Investigating the way in which these receptors signal and traffic to the cell membrane is vital in understanding disease processes related to MCR dysfunction. MRAP is an MC2R accessory protein, responsible for adrenal MC2R trafficking and function. Here we identify MRAP2 as a unique homologue of MRAP, expressed in brain and the adrenal gland. We report that MRAP and MRAP2 can interact with all 5 MCRs. This interaction results in MC2R surface expression and signaling. In contrast, MRAP and MRAP2 can reduce MC1R, MC3R, MC4R, and MC5R responsiveness to [Nle4,D-Phe7]alpha-melanocyte-stimulating hormone (NDP-MSH). Collectively, our data identify MRAP and MRAP2 as unique bidirectional regulators of the MCR family.


Journal of Medical Genetics | 2003

RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections

Ilaria Zito; Susan M. Downes; Reshma J. Patel; Michael E. Cheetham; Neil D. Ebenezer; Sharon Jenkins; S.S. Bhattacharya; Andrew R. Webster; Graham E. Holder; Ac Bird; D E Bamiou; Alison J. Hardcastle

Retinitis pigmentosa (RP) is a progressive retinal degeneration that affects about 1 in 4000 of the population.1 Approximately 15–30% of patients with RP have X linked retinitis pigmentosa (XLRP), which is the most severe form of RP consistently manifesting early in life.2,3 Night blindness is usually present in early childhood with loss of peripheral visual fields and ultimately central vision, resulting in registered blindness by the end of the third decade. Female carriers display a broad spectrum of fundus appearances ranging from normal to extensive retinal degeneration.4–6 XLRP is genetically heterogeneous with two major loci, RP2 (Xp11.23) and RP3 (Xp21.1). Both disease genes have now been identified (respectively RP2 7 and RPGR 8–10) with RP2 mutations causing disease in approximately 15% of XLRP families,11,12 while RPGR mutations are reportedly more common, accounting for up to 75% of XLRP.10 Two other rare loci for XLRP have also been described on Xp22 and Xq26–27.13,141 Hong et al 15 described the phenotype and pathology of an RPGR knockout mouse model. They showed the subcellular localisation of RPGR to the photoreceptor connecting cilia, and in the absence of RPGR partial mislocalisation of essential outer segment proteins. These data suggest a putative role for RPGR in the retina, controlling movement of essential proteins from the inner to the outer segment of photoreceptors via the connecting cilia. Several groups have recently identified a retina specific RPGR interacting protein (RPGRIP1).16–18 This protein also localises to the photoreceptor connecting cilium and is thought to be a structural component of the ciliary axoneme.18 Subsequent mutation screening in patients suffering from retinal diseases has identified mutations in RPGRIP1 as a cause of Leber congenital amaurosis.19,20 In this report, we present the phenotype of …


Journal of Neurochemistry | 2008

Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1G93A mouse model of ALS

Bernadett Kalmar; Sergey S. Novoselov; Anna Gray; Michael E. Cheetham; Boris Margulis; Linda Greensmith

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by motoneuron degeneration, resulting in muscle paralysis and death, typically within 1–5 years of diagnosis. Although the pathogenesis of ALS remains unclear, there is evidence for the involvement of proteasome dysfunction and heat shock proteins in the disease. We have previously shown that treatment with a co‐inducer of the heat shock response called arimoclomol is effective in the SODG93A mouse model of ALS, delaying disease progression and extending the lifespan of SODG93A mice ( Kieran et al. 2004 ). However, this previous study only examined the effects arimoclomol when treatment was initiated in pre‐ or early symptomatic stages of the disease. Clearly, to be of benefit to the majority of ALS patients, any therapy must be effective after symptom onset. In order to establish whether post‐symptomatic treatment with arimoclomol is effective, in this study we carried out a systematic assessment of different treatment regimes in SODG93A mice. Treatment with arimoclomol from early (75 days) or late (90 days) symptomatic stages significantly improved muscle function. Treatment from 75 days also significantly increased the lifespan of SODG93A mice, although treatment from 90 days has no significant effect on lifespan. The mechanism of action of arimoclomol involves potentiation of the heat shock response, and treatment with arimoclomol increased Hsp70 expression. Interestingly, this up‐regulation in Hsp70 was accompanied by a decrease in the number of ubiquitin‐positive aggregates in the spinal cord of treated SODG93A mice, suggesting that arimoclomol directly effects protein aggregation and degradation.


Current Biology | 2005

HSJ1 Is a Neuronal Shuttling Factor for the Sorting of Chaperone Clients to the Proteasome

Britta Westhoff; J. Paul Chapple; Jacqueline van der Spuy; Jörg Höhfeld; Michael E. Cheetham

Protein degradation in eukaryotic cells usually involves the attachment of a ubiquitin chain to a substrate protein and its subsequent sorting to the proteasome. Molecular mechanisms underlying the sorting process only recently began to emerge and rely on a cooperation of chaperone machineries and ubiquitin-chain recognition factors [1-3]. Here, we identify isoforms of the cochaperone HSJ1 as neuronal shuttling factors for ubiquitylated proteins. HSJ1 combines a J-domain that stimulates substrate loading onto the Hsc70 chaperone with ubiquitin interaction motifs (UIMs) involved in binding ubiquitylated chaperone clients. HSJ1 prevents client aggregation, shields clients against chain trimming by ubiquitin hydrolases, and stimulates their sorting to the proteasome. In this way, HSJ1 isoforms participate in ER-associated degradation (ERAD) and protect neurons against cytotoxic protein aggregation.

Collaboration


Dive into the Michael E. Cheetham's collaboration.

Top Co-Authors

Avatar

Alison J. Hardcastle

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Mònica Aguilà

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Naheed Kanuga

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

David A. Parfitt

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nele Schwarz

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Paul Chapple

University College London

View shared research outputs
Top Co-Authors

Avatar

Sergey S. Novoselov

UCL Institute of Ophthalmology

View shared research outputs
Researchain Logo
Decentralizing Knowledge