Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael E. Cox is active.

Publication


Featured researches published by Michael E. Cox.


Journal of Biological Chemistry | 1999

c-Src-mediated Phosphorylation of the Epidermal Growth Factor Receptor on Tyr845 and Tyr1101 Is Associated with Modulation of Receptor Function

Jacqueline S. Biscardi; Ming Chei Maa; David A. Tice; Michael E. Cox; Tzeng Horne Leu; Sarah J. Parsons

Accumulating evidence indicates that interactions between the epidermal growth factor receptor (EGFR) and the nonreceptor tyrosine kinase c-Src may contribute to an aggressive phenotype in multiple human tumors. Previous work from our laboratory demonstrated that murine fibroblasts which overexpress both these tyrosine kinases display synergistic increases in DNA synthesis, soft agar growth, and tumor formation in nude mice, and increased phosphorylation of the receptor substrates Shc and phospholipase γ as compared with single overexpressors. These parameters correlated with the ability of c-Src and EGFR to form an EGF-dependent heterocomplex in vivo. Here we provide evidence that association between c-Src and EGFR can occur directly, as shown by receptor overlay experiments, and that it results in the appearance of two novel tyrosine phosphorylations on the receptor that are seen both in vitro and in vivo following EGF stimulation. Edman degradation analyses and co-migration of synthetic peptides with EGFR-derived tryptic phosphopeptides identify these sites as Tyr845 and Tyr1101. Tyr1101 lies within the carboxyl-terminal region of the EGFR among sites of receptor autophosphorylation, while Tyr845 resides in the catalytic domain, in a position analogous to Tyr416 of c-Src. Phosphorylation of Tyr416 and homologous residues in other tyrosine kinase receptors has been shown to be required for or to increase catalytic activity, suggesting that c-Src can influence EGFR activity by mediating phosphorylation of Tyr845. Indeed, EGF-induced phosphorylation of Tyr845 was increased in MDA468 human breast cancer cells engineered to overexpress c-Src as compared with parental MDA 468 cells. Furthermore, transient expression of a Y845F variant EGFR in murine fibroblasts resulted in an ablation of EGF-induced DNA synthesis to nonstimulated levels. Together, these data support the hypothesis that c-Src-mediated phosphorylation of EGFR Tyr845 is involved in regulation of receptor function, as well as in tumor progression.


Journal of Clinical Oncology | 2010

Survival Outcomes and Prognostic Factors in Mycosis Fungoides/Sézary Syndrome: Validation of the Revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer Staging Proposal

Nita Agar; Emma Wedgeworth; Siobhan Crichton; Tracey J. Mitchell; Michael E. Cox; Silvia Ferreira Rodrigues Mendes Ferreira; Alistair Robson; Eduardo Calonje; Catherine M. Stefanato; Elizabeth Mary Wain; Bridget S. Wilkins; Paul Fields; Alan Dean; Katherine Webb; Julia Scarisbrick; Stephen Morris; Sean Whittaker

PURPOSE We have analyzed the outcome of mycosis fungoides (MF) and Sézary syndrome (SS) patients using the recent International Society for Cutaneous Lymphomas (ISCL)/European Organisation for Research and Treatment of Cancer (EORTC) revised staging proposal. PATIENTS AND METHODS Overall survival (OS), disease-specific survival (DSS), and risk of disease progression (RDP) were calculated for a cohort of 1,502 patients using univariate and multivariate models. RESULTS The mean age at diagnosis was 54 years, and 71% of patients presented with early-stage disease. Disease progression occurred in 34%, and 26% of patients died due to MF/SS. A significant difference in survival and progression was noted for patients with early-stage disease having patches alone (T1a/T2a) compared with those having patches and plaques (T1b/T2b). Univariate analysis established that (1) advanced skin and overall clinical stage, increased age, male sex, increased lactate dehydrogenase (LDH), and large-cell transformation were associated with reduced survival and increased RDP; (2) hypopigmented MF, MF with lymphomatoid papulosis, and poikilodermatous MF were associated with improved survival and reduced RDP; and (3) folliculotropic MF was associated with an increased RDP. Multivariate analysis established that (1) advanced skin (T) stage, the presence in peripheral blood of the tumor clone without Sézary cells (B0b), increased LDH, and folliculotropic MF were independent predictors of poor survival and increased RDP; (2) large-cell transformation and tumor distribution were independent predictors of increased RDP only; and (3) N, M, and B stages; age; male sex; and poikilodermatous MF were only significant for survival. CONCLUSION This study has validated the recently proposed ISCL/EORTC staging system and identified new prognostic factors.


The Prostate | 2009

Insulin Receptor Expression by Human Prostate Cancers

Michael E. Cox; Martin Gleave; Mahvash Zakikhani; Robert H. Bell; Esther Piura; Elaine Vickers; Matthew Cunningham; Ola Larsson; Ladan Fazli; Michael Pollak

Although recent laboratory and population studies suggest that prostate cancer may be responsive to insulin, there is a gap in knowledge concerning the expression of insulin receptors on benign or malignant prostate tissue.


Journal of Clinical Pathology | 2007

Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancers

Ashish Rajput; Melinda A. Miller; Alessandro De Luca; Niki Boyd; Sam Leung; Antonio Hurtado-Coll; Ladan Fazli; Edward C Jones; Jodie B Palmer; Martin Gleave; Michael E. Cox; David Huntsman

Background: Recent reports indicate that prostate cancers (CaP) frequently over-express the potential oncogenes, ERG or ETV1. Many cases have chromosomal rearrangements leading to the fusion of the 5′ end of the androgen-regulated serine protease TMPRSS2 (21q22.2) to the 3′ end of either ERG (21q22.3) or ETV1 (7p21.3). The consequence of these rearrangements is aberrant androgen receptor-driven expression of the potential oncogenes, ETV1 or ERG. Aim: To determine the frequency of rearrangements involving TMPRSS2, ERG, or ETV1 genes in CaP of varying Gleason grades through fluorescence in situ hybridisation (FISH) on CaP tissue microarrays (TMAs). Methods: Two independent assays, a TMPRSS2 break-apart assay and a three-colour gene fusion FISH assay were applied to TMAs. FISH positive cases were confirmed by reverse transcriptase (RT) PCR and DNA sequence analysis. Results: A total of 106/196 (54.1%) cases were analysed by FISH. None of the five benign prostatic hyperplasia cases analysed exhibited these gene rearrangements. TMPRSS2:ERG fusion was found more frequently in moderate to poorly differentiated tumours (35/86, 40.7%) than in well differentiated tumours (1/15, 6.7%, p = 0.017). TMPRSS2:ETV1 gene fusions were not detected in any of the cases tested. TMPRSS2:ERG fusion product was verified by RT-PCR followed by DNA sequencing in 7/7 randomly selected positive cases analysed. Conclusion: This study indicates that TMPRSS2:ERG gene rearrangements in CaP may be used as a diagnostic tool to identify prognostically relevant sub-classifications of these cancers.


Cancer Research | 2008

Phosphorylated Caveolin-1 Regulates Rho/ROCK-Dependent Focal Adhesion Dynamics and Tumor Cell Migration and Invasion

Bharat H. Joshi; Scott S. Strugnell; Jacky G. Goetz; Liliana D. Kojic; Michael E. Cox; Obi L. Griffith; Simon K. Chan; Steven J.M. Jones; Sher-Ping Leung; Hamid Masoudi; Samuel Leung; Sam M. Wiseman; Ivan R. Nabi

Rho/ROCK signaling and caveolin-1 (Cav1) are implicated in tumor cell migration and metastasis; however, the underlying molecular mechanisms remain poorly defined. Cav1 was found here to be an independent predictor of decreased survival in breast and rectal cancer and significantly associated with the presence of distant metastasis for colon cancer patients. Rho/ROCK signaling promotes tumor cell migration by regulating focal adhesion (FA) dynamics through tyrosine (Y14) phosphorylation of Cav1. Phosphorylated Cav1 is localized to protrusive domains of tumor cells and Cav1 tyrosine phosphorylation is dependent on Src kinase and Rho/ROCK signaling. Increased levels of phosphorylated Cav1 were associated with elevated GTP-RhoA levels in metastatic tumor cells of various tissue origins. Stable expression and knockdown studies of Cav1 in tumor cells showed that phosphorylated Cav1 expression stimulates Rho activation, stabilizes FAK association with FAs, and promotes cell migration and invasion in a ROCK-dependent and Src-dependent manner. Tyrosine-phosphorylated Cav1, therefore, functions as an effector of Rho/ROCK signaling in the regulation of FA turnover and, thereby, tumor cell migration and invasion. These studies define a feedback loop between Rho/ROCK, Src, and phosphorylated Cav1 in tumor cell protrusions, identifying a novel function for Cav1 in tumor metastasis that may contribute to the poor prognosis of some Cav1-expressing tumors.


Molecular and Cellular Biology | 2001

Interleukin-6- and Cyclic AMP-Mediated Signaling Potentiates Neuroendocrine Differentiation of LNCaP Prostate Tumor Cells

Paul D. Deeble; Daniel J. Murphy; Sarah J. Parsons; Michael E. Cox

ABSTRACT Neuroendocrine (NE) differentiation in prostatic adenocarcinomas has been reported to be an early marker for development of androgen independence. Secretion of mitogenic peptides from nondividing NE cells is thought to contribute to a more aggressive disease by promoting the proliferation of surrounding tumor cells. We undertook studies to determine whether the prostate cancer cell line LNCaP could be induced to acquire NE characteristics by treatment with agents that are found in the complex environment in which progression of prostate cancer towards androgen independence occurs. We found that cotreatment of LNCaP cells with agents that signal through cyclic AMP-dependent protein kinase (PKA), such as epinephrine and forskolin, and with the cytokine interleukin-6 (IL-6) promoted the acquisition of an NE morphological phenotype above that seen with single agents. Convergent IL-6 and PKA signaling also resulted in potentiated mitogen-activated protein kinase (MAPK) activation without affecting the level of signal transducer and activator of transcription or PKA activation observed with these agents alone. Cotreatment with epinephrine and IL-6 synergistically increased c-fos transcription as well as transcription from the β4 nicotinic acetylcholine receptor subunit promoter. Potentiated transcription from these elements was shown to be dependent on the MAPK pathway. Most importantly, cotreatment with PKA activators and IL-6 resulted in increased secretion of mitogenic neuropeptides. These results indicate that PKA and IL-6 signaling participates in gene transcriptional changes that reflect acquisition of an NE phenotype by LNCaP cells and suggest that similar signaling mechanisms, particularly at sites of metastasis, may be responsible for the increased NE content of many advanced prostate carcinomas.


Cancer Research | 2004

Increased Insulin-Like Growth Factor I Receptor Expression and Signaling Are Components of Androgen-Independent Progression in a Lineage-Derived Prostate Cancer Progression Model

Sandra L. Krueckl; Robert A. Sikes; N. Magnus Edlund; Robert H. Bell; Antonio Hurtado-Coll; Ladan Fazli; Martin Gleave; Michael E. Cox

Apoptosis and inhibition of mitosis are primary mechanisms mediating androgen ablation therapy-induced regression of prostate cancer (PCa). However, PCa readily becomes androgen independent, leading to fatal disease. Up-regulated growth and survival signaling is implicated in development of resistance to androgen ablation therapy. We are testing the hypothesis that insulin-like growth factor (IGF) responsiveness is required for androgen-independent (AI) progression. Using the LNCaP human PCa progression model, we have determined that IGF-I–mediated protection from apoptotic stress and enhanced mitotic activity is androgen dependent in LNCaP cells but is androgen independent in lineage-derived C4-2 cells. Both cell lines exhibit androgen-responsive patterns of IGF-I receptor (IGF-IR) expression, activation, and signaling to insulin receptor substrate-2 and AKT. However, C4-2 cells express higher levels of IGF-IR mRNA and protein and exhibit enhanced IGF-I–mediated phosphorylation and downstream signaling under androgen-deprived conditions. In comparisons of naïve and AI metastatic human PCa specimens, we have confirmed that IGF-IR levels are elevated in advanced disease. Together with our LNCaP/C4-2 AI progression model data, these results indicate that increased IGF-IR expression is associated with AI antiapoptotic and promitotic IGF signaling in PCa disease progression.


Cancer Research | 2014

High Fidelity Patient-Derived Xenografts for Accelerating Prostate Cancer Discovery and Drug Development

Dong Lin; Alexander W. Wyatt; Hui Xue; Yuzhuo Wang; Xin Dong; Anne Haegert; Rebecca Wu; Sonal Brahmbhatt; Fan Mo; Jong L; Robert H. Bell; Shawn Anderson; Antonio Hurtado-Coll; Ladan Fazli; Sharma M; Himisha Beltran; Mark A. Rubin; Michael E. Cox; Peter W. Gout; Morris J; Goldenberg L; Stanislav Volik; Martin Gleave; Colin Collins

Standardized and reproducible preclinical models that recapitulate the dynamics of prostate cancer are urgently needed. We established a bank of transplantable patient-derived prostate cancer xenografts that capture the biologic and molecular heterogeneity currently confounding prognostication and therapy development. Xenografts preserved the histopathology, genome architecture, and global gene expression of donor tumors. Moreover, their aggressiveness matched patient observations, and their response to androgen withdrawal correlated with tumor subtype. The panel includes the first xenografts generated from needle biopsy tissue obtained at diagnosis. This advance was exploited to generate independent xenografts from different sites of a primary site, enabling functional dissection of tumor heterogeneity. Prolonged exposure of adenocarcinoma xenografts to androgen withdrawal led to castration-resistant prostate cancer, including the first-in-field model of complete transdifferentiation into lethal neuroendocrine prostate cancer. Further analysis of this model supports the hypothesis that neuroendocrine prostate cancer can evolve directly from adenocarcinoma via an adaptive response and yielded a set of genes potentially involved in neuroendocrine transdifferentiation. We predict that these next-generation models will be transformative for advancing mechanistic understanding of disease progression, response to therapy, and personalized oncology.


Cancer Research | 2006

Short Hairpin RNA Knockdown of the Androgen Receptor Attenuates Ligand-Independent Activation and Delays Tumor Progression

Helen Cheng; Rob Snoek; Fariba Ghaidi; Michael E. Cox; Paul S. Rennie

Progression to androgen independence is the lethal end stage of prostate cancer. We used expression of androgen receptor (AR)-targeted short hairpin RNAs (shRNA) to directly test the requirement for AR in ligand-independent activation of androgen-regulated genes and hormone-independent tumor progression. Transient transfection of LNCaP human prostate cancer cells showed that AR shRNA decreased R1881 induction of the prostate-specific antigen (PSA)-luciferase reporter by 96%, whereas activation by forskolin, interleukin-6, or epidermal growth factor was inhibited 48% to 75%. Whereas the antiandrogen bicalutamide provided no further suppression, treatment with the mitogen-activated protein kinase (MAPK) inhibitor U0126 completely abrogated the residual activity, indicating a MAPK-dependent, AR-independent pathway for regulating the PSA promoter. Expression of doxycycline-inducible AR shRNA expression in LNCaP cells resulted in decreased levels of AR and PSA as well as reduced proliferation in vitro. When these cells were grown as xenografts in immunocompromised mice, induction of AR shRNA decreased serum PSA to below castration nadir levels and significantly retarded tumor growth over the entire 55-day experimental period. This is the first demonstration that, by inducibly suppressing AR expression in vivo, there is an extensive delay in progression to androgen independence as well as a dramatic inhibition of tumor growth and decrease in serum PSA, which exceeds that seen with castration alone. Based on these findings, we propose that suppressing AR expression may provide superior therapeutic benefit in reducing tumor growth rate than castration and may additionally be very effective in delaying progression to androgen independence.


BMC Cancer | 2008

Association of TMPRSS2-ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer

Liesel M. FitzGerald; Ilir Agalliu; Karynn Johnson; Melinda A. Miller; Erika M. Kwon; Antonio Hurtado-Coll; Ladan Fazli; Ashish Rajput; Martin Gleave; Michael E. Cox; Elaine A. Ostrander; Janet L. Stanford; David Huntsman

BackgroundThe presence of the TMPRSS2-ERG fusion gene in prostate tumors has recently been associated with an aggressive phenotype, as well as recurrence and death from prostate cancer. These associations suggest the hypothesis that the gene fusion may be used as a prognostic indicator for prostate cancer.MethodsIn this study, fluorescent in situ hybridization (FISH) assays were used to assess TMPRSS2-ERG fusion status in a group of 214 prostate cancer cases from two population-based studies. The FISH assays were designed to detect both fusion type (deletion vs. translocation) and the number of fusion copies (single vs. multiple). Genotyping of four ERG and one TMPRSS2 SNPs using germline DNA was also performed in a sample of the cases (n = 127).ResultsOf the 214 tumors scored for the TMPRSS2-ERG fusion, 64.5% were negative and 35.5% were positive for the fusion. Cases with the TMPRSS2-ERG fusion did not exhibit reduced prostate cancer survival (HR = 0.92, 95% CI = 0.22–3.93), nor was there a significant difference in cause-specific survival when stratifying by translocation or deletion (HR = 0.84, 95% CI = 0.23–3.12) or by the number of retained fusion copies (HR = 1.22, 95% CI = 0.45–3.34). However, evidence for reduced prostate cancer-specific survival was apparent in those cases whose tumor had multiple copies of the fusion. The variant T allele of the TMPRSS2 SNP, rs12329760, was positively associated with TMPRSS2-ERG fusion by translocation (p = 0.05) and with multiple copies of the gene fusion (p = 0.03).ConclusionIf replicated, the results presented here may provide insight into the mechanism by which the TMPRSS2-ERG gene fusion arises and also contribute to diagnostic evaluations for determining the subset of men who will go on to develop metastatic prostate cancer.

Collaboration


Dive into the Michael E. Cox's collaboration.

Top Co-Authors

Avatar

Martin Gleave

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ladan Fazli

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Paul S. Rennie

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Ong

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert H. Bell

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Colleen C. Nelson

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Antonio Hurtado-Coll

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge