Michael E. Scharf
University of Nebraska–Lincoln
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael E. Scharf.
Journal of Economic Entomology | 2000
Robert J. Wright; Michael E. Scharf; Lance J. Meinke; Xuguo Zhou; Blair D. Siegfried; Laurence D. Chandler
Abstract Soil insecticides were evaluated in laboratory and field studies against larvae of an insecticide resistant population (Phelps County, NE) of western corn rootworm,Diabrotica virgifera virgiferaLeConte. Insecticide toxicity was evaluated by topical application of technical insecticides to 3rd instars from Saunders County, NE (susceptible) and Phelps County populations. Resistance ratios (LD50Phelps County/LD50Saunders County) for the insecticides methyl parathion, tefluthrin, carbofuran, terbufos, and chlorpyrifos were 28.0, 9.3, 8.7, 2.6 and 1.3, respectively. Biochemical investigation of suspected enzymatic resistance mechanisms in 3rd instars identified significant elevation of esterase activity (alpha and beta naphthyl acetate hydrolysis [3.8- and 3.9-fold]). Examination of 3rd instar esterases by native PAGE identified increased intensity of several isoenzymes in the resistant population. Assays of cytochrome P450 activity (4-CNMA demethylation and aldrin epoxidation) did not identify elevated activity in resistant 3rd instars. Granular soil insecticides were applied at planting to corn, Zea mays L., in replicated field trials in 1997 and 1998 at the same Phelps County site as the source of resistant rootworms for the laboratory studies. In 1997, planting time applications of Counter 20CR, Counter 15 G (terbufos), and Lorsban 15 G (chlorpyrifos) resulted in the lowest root injury ratings (1–6 Iowa scale); 2.50, 2.55, 2.65, respectively (untreated check root rating of 4.55). In 1998, all insecticides performed similarly against a lower rootworm density (untreated check root rating of 3.72). These studies suggest that resistance previously documented in adults also is present in 3rd instars, esterases are possibly involved as resistance mechanisms, and resistance to methyl parathion in adults is also evident in larvae, but does not confer cross-resistance in larvae to all organophosphate insecticides.
Insect Molecular Biology | 2001
Michael E. Scharf; Srinivas Parimi; Lance J. Meinke; Laurence D. Chandler; Blair D. Siegfried
We have previously determined that cytochrome P450‐based oxidation is involved in resistance to the insecticides methyl parathion and carbaryl in geographically distinct Nebraska western corn rootworm populations. Three new family 4 cytochrome P450 (CYP4) gene fragments (CYP4AJ1, CYP4G18 and CYP4AK1) were cloned and sequenced from insecticide‐resistant and ‐susceptible western corn rootworms. Insecticide bioassays indicated the resistant population employed in this study was significantly resistant to the insecticides methyl parathion and carbaryl. CYP4AJ1 and CYP4G18 were cloned from both genomic PCR and RT‐PCR products, although only CYP4AJ1 contains an intronic region. Alignments of inferred amino acid sequences with other homologous insect CYP4 genes indicates a high degree of similarity. Northern analysis concurrently employing mixed probes representing each of the three rootworm CYP4 fragments identified increased mRNA transcript signals (i) in resistant rootworms and (ii) following induction by the P450 inducer pentamethyl benzene. These results support our previous documentation of P450‐based insecticide resistance and suggest increased CYP4 transcript abundance can serve as a molecular resistance‐associated marker.
Chemosphere | 2000
Francisca Miota; Blair D. Siegfried; Michael E. Scharf; Michael J. Lydy
Cytochrome P450-dependent aldrin epoxidation was characterized in third instar larvae of the aquatic midge, Chironomus tentans. Optimal in vitro assay conditions for the epoxidase were pH 7.6 and 31 degrees C. Activity was linear up to 40 min of incubation time and 0.5 mg microsomal protein per incubation. The activity was concentrated in the microsomal fraction of whole body homogenates and was NADPH-dependent. The effect of atrazine exposure on aldrin epoxidase was measured to determine if this herbicide induces cytochrome P450-dependent activity. Comparisons of control and atrazine-exposed midges indicated increased epoxidase activity as a result of atrazine exposure, and a 45 kDa protein of increased intensity was observed after SDS-PAGE of microsomal protein. The molecular weight of this protein was similar in size to cytochrome P450 enzymes reported for other insects. Heme staining of SDS-PAGE gels and immunochemical studies using a Drosophila melanogaster anti-P450 polyclonal antiserum, further support the cytochrome P450 nature of this inducible 45 kDa protein.
Archives of Insect Biochemistry and Physiology | 1999
Michael E. Scharf; Blair D. Siegfried
Fipronil is a member of the relatively new phenylpyrazole insecticide class that is active at the neuro-inhibitory gamma amino butyric acid (GABA)-gated chloride channel/ionopore complex. The toxicity and neurophysiological effects of fipronil and its oxidative sulfone metabolite [5-amino-1-(2,6-dichloro-4-trifluoromethylphenyl)-3-cyano-4-trifluoromethylsulfonylpyrazole] were investigated by using an insecticide-susceptible western corn rootworm population. In topical bioassays using adult rootworms, fipronil was toxic at very low doses (LD50 = 0.07; LD90 = 0.33 ng/mg). At the LD90, pre-treatment with the cytochrome P450 monooxygenase inhibitor piperonyl butoxide led to mild antagonism of fipronil toxicity (LD90 = 0.42 ng/mg), while the sulfone analog had greater toxicity (LD90 = 0.22 ng/mg). In neurophysiological studies of spontaneous electrical activity, adult and larval rootworms were equally affected by fipronil and the sulfone analog at 10 μM (in the presence of 5 mM GABA) in comparison to GABA-treated baselines. Using larval rootworms, insensitivity of the GABA receptor to binding by picrotoxinin or dieldrin (10 μM ) was not apparent in the presence of 5 mM GABA. Further neurophysiological investigation using a range of concentrations (0.625–20.0 μM) on larval rootworms indicated concentration-dependent effects on bursting activity for both fipronil and the sulfone analog; however, subtle differences were observed between these two compounds. Results indicate that both fipronil and its oxidative sulfone metabolite have similar toxicological and neurological effects on rootworms. Arch. Insect Biochem. Physiol. 40:150–156, 1999.
Pest Management Science | 2000
Michael E. Scharf; Blair D. Siegfried; Lance J. Meinke; Laurence D. Chandler
Fipronil toxicity and metabolism were studied in two insecticide-resistant, and one susceptible western corn rootworm (Diabrotica virgifera virgifera, LeConte) populations. Toxicity was evaluated by exposure to surface residues and by topical application. Surface residue bioassays indicated no differences in fipronil susceptibility among the three populations. Topical bioassays were used to study the relative toxicity of fipronil, fipronila the mono-oxygenase inhibitor piperonyl butoxide, and fipronils oxidative sulfone metabolite in two populations (one resistant with elevated mono-oxygenase activity). Fipronil and fipronil-sulfone exhibited similar toxicity and application of piperonyl butoxide prior to fipronil resulted in marginal effects on toxicity. Metabolism of ( 14 C)fipronil was evaluated in vivo and in vitro in the three rootworm populations. In vivo studies indicated the dominant pathway in all populations to be formation of the oxidative sulfone metabolite. Much lower quantities of polar metabolites were also identified. In vitro studies were performed using sub-cellular protein fractions (microsomal and cytosolic), and glutathione-agarose purified glutathione-S- transferase. Oxidative sulfone formation occurred almost exclusively in in vitro microsomal reactions and was increased in the resistant populations. Highly polar metabolites were formed exclusively in in vitro cytosolic reactions. In vitro reactions performed with purified, cytosolic glutathione-S- transferase (MW = 27kDa) did not result in sulfone formation, although three additional polar metabolites not initially detectable in crude cytosolic reactions were detected. Metabolism results indicate both cytochromes P450 and glutathione-S-transferases are important to fipronil metabolism in the western corn rootworm and that toxic sulfone formation by P450 does not affect net toxicity. # 2000 Society of Chemical Industry
Journal of Economic Entomology | 2002
Xuguo Zhou; Michael E. Scharf; Srinivas Parimi; Lance J. Meinke; Robert J. Wright; Laurence D. Chandler; Blair D. Siegfried
Abstract Resistance to methyl-parathion among Nebraska western corn rootworm, Diabrotica virgifera virgifera LeConte, populations is associated with increased hydrolytic metabolism of an organophosphate insecticide substrate. An electrophoretic method to identify resistant individuals based on the staining intensity of esterase isozymes on nondenaturing polyacrylamide gels was developed. Three groups of esterases (I, II, and III) were visible on the gels, but only group II esterase isozymes were intensified in resistant populations. A total of 26 and 31 field populations of western corn rootworms from Nebraska (in 1998 and 1999, respectively) were assessed with nondenaturing polyacrylamide gel electrophoresis (PAGE) assays and diagnostic concentration bioassays. Significant correlations were observed between the two diagnostic assays. Group II esterase isozymes provide a reliable biochemical marker for detection of methyl-parathion resistance in individual western corn rootworms and a tool for monitoring the frequency of resistant individuals in field populations.
Archive | 2001
Blair D. Siegfried; Michael E. Scharf
The organophosphate (OP) insecticides were first introduced as pest control agents over 50 years ago. These compounds still account for approximately 30% of the registered synthetic insecticides and acaricides in the US, and are used in a variety of agriculture, public hygiene and medical settings (Ware 1994). Organophosphate insecticides cause toxicity through inhibition of acetylcholinesterase (AChE), which is responsible for the degradation of the excitatory neurotransmitter, acetylcholine, thereby terminating transmission of nerve impulses at cholinergic synapses. Inhibition of this enzyme prolongs the residence time of acetylcholine at synapses resulting in hyper-excitation and eventual death.
Journal of Economic Entomology | 2004
Blair D. Siegfried; Lance J. Meinke; Srinivas Parimi; Michael E. Scharf; Timothy J. Nowatzki; Xuguo Zhou; Laurence D. Chandler
Abstract Areawide pest management involves the uniform application of a pest control strategy over wide geographic areas. Therefore, these programs are likely to impose intense selective pressures, and the risk for resistance development among pest species for which areawide management programs are implemented is likely to be high. Pilot studies for areawide management of western corn rootworm, Diabrotica virgifera virgifera LeConte, were conducted from 1996 to 2002 at four different sites across the Corn Belt. This program used cucurbitacin baits to deliver high doses of a traditional neurotoxic insecticide (carbaryl) to individual insects while reducing the overall rate of insecticide use. Because of the concern and potential for resistance evolution, annual assessments of susceptibility to the active ingredient carbaryl were conducted both within the managed area as well as from untreated control areas. Significantly reduced susceptibility to carbaryl based on survival at a diagnostic concentration was detected in three of the four management sites (Kansas, Iowa, and Illinois/Indiana), whereas susceptibility of beetles collected outside the managed areas remained unchanged. Additionally, significantly reduced responsiveness to cucurbitacin baits was observed in beetles collected from the managed area relative to the control area at the same three sites. These results suggest strongly that areawide management has the potential to select for resistance and that a strategy for managing resistance and reducing selective pressure should be proactively implemented.
Journal of Economic Entomology | 2003
Xuguo Zhou; Michael E. Scharf; Lance J. Meinke; Laurence D. Chandler; Blair D. Siegfried
A consistent correlation between elevated esterase activity and methyl parathion resistance among Nebraska western corn rootworm, Diabrotica virgifera virgifera LeConte, populations has previously been documented. Characterization of general esterase activity using naphtholic esters as model substrates indicated that differences between resistant and susceptible strains could be maximized by optimizing assay conditions. The optimal conditions identified here were similar to those reported for other insect species. The majority of general esterase activity was found in the cytosolic fractions of resistant populations, whereas the activity was more evenly distributed between cytosolic and mitochondrial/nuclear fractions in the susceptible population. General esterase activity was predominately located in the adult thorax and abdomen. Although there were significant differences in general esterase activities between resistant and susceptible populations, the differences exhibited in single beetle activity assays did not provide sufficient discrimination to identify resistant individuals. In contrast, single larva activity assays provided greater discrimination and could be considered as an alternative to traditional bioassay techniques.
Journal of Economic Entomology | 2003
Srinivas Parimi; Michael E. Scharf; Lance J. Meinke; Laurence D. Chandler; Blair D. Siegfried
Field populations of western corn rootworm, Diabrotica virgifera virgifera LeConte, were collected from three different sites (York Co., Phelps Co., and Saunders Co.) in Nebraska during 1996. Adult bioassays of these three populations were conducted with different concentrations of methyl-parathion and at a diagnostic concentration (1.0 microg/ml) to determine resistance levels among these populations. Self and reciprocal crosses were made between the two resistant and one susceptible laboratory-reared populations. Dose-responses and dominance ratios calculated for the four reciprocal crosses indicated that resistance was incompletely dominant in both strains, although in one of the strains there was an indication of sex linkage. However, evaluation of native polyacrylamide gels stained for nonspecific esterases and nonspecific esterase activity of parents and F1 progeny of the crosses suggested that esterase inheritance was completely dominant and autosomal. The results of this study were inconclusive with regard to the precise nature of inheritance, because the bioassays and esterase assays could not discriminate between heterozygotes and homozygotes. However, they do provide insight into the potential for developing simple diagnostic assays to assess resistance frequencies. Based on the inheritance studies described in this investigation, we can begin to generate information on specific genetic factors that dictate the evolutionary divergence of discrete resistant populations and facilitate modeling efforts designed to approximate the movement of genes for resistance among populations.