Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael E. Weale is active.

Publication


Featured researches published by Michael E. Weale.


Nature Genetics | 2010

A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1

Amy Strange; Francesca Capon; Chris C. A. Spencer; Jo Knight; Michael E. Weale; Michael H. Allen; Anne Barton; Céline Bellenguez; Judith G.M. Bergboer; Jenefer M. Blackwell; Elvira Bramon; Suzannah Bumpstead; Juan P. Casas; Michael J. Cork; Aiden Corvin; Panos Deloukas; Alexander Dilthey; Audrey Duncanson; Sarah Edkins; Xavier Estivill; Oliver FitzGerald; Colin Freeman; Emiliano Giardina; Emma Gray; Angelika Hofer; Ulrike Hüffmeier; Sarah Hunt; Alan D. Irvine; Janusz Jankowski; Brian J. Kirby

To identify new susceptibility loci for psoriasis, we undertook a genome-wide association study of 594,224 SNPs in 2,622 individuals with psoriasis and 5,667 controls. We identified associations at eight previously unreported genomic loci. Seven loci harbored genes with recognized immune functions (IL28RA, REL, IFIH1, ERAP1, TRAF3IP2, NFKBIA and TYK2). These associations were replicated in 9,079 European samples (six loci with a combined P < 5 × 10−8 and two loci with a combined P < 5 × 10−7). We also report compelling evidence for an interaction between the HLA-C and ERAP1 loci (combined P = 6.95 × 10−6). ERAP1 plays an important role in MHC class I peptide processing. ERAP1 variants only influenced psoriasis susceptibility in individuals carrying the HLA-C risk allele. Our findings implicate pathways that integrate epidermal barrier dysfunction with innate and adaptive immune dysregulation in psoriasis pathogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders

Cynthia M. Beall; Gianpiero L. Cavalleri; Libin Deng; Robert C. Elston; Yang Gao; Jo Knight; Chaohua Li; Jiang Chuan Li; Yu Liang; Mark McCormack; Hugh Montgomery; Hao Pan; Peter A. Robbins; Siu-Cheung Tam; Ngodrop Tsering; Krishna R. Veeramah; Wei Wang; Puchung Wangdui; Michael E. Weale; Yaomin Xu; Zhe Xu; Ling Yang; M Justin S Zaman; Changqing Zeng; Li Zhang; Xianglong Zhang; Pingcuo Zhaxi; Yong-Tang Zheng

By impairing both function and survival, the severe reduction in oxygen availability associated with high-altitude environments is likely to act as an agent of natural selection. We used genomic and candidate gene approaches to search for evidence of such genetic selection. First, a genome-wide allelic differentiation scan (GWADS) comparing indigenous highlanders of the Tibetan Plateau (3,200–3,500 m) with closely related lowland Han revealed a genome-wide significant divergence across eight SNPs located near EPAS1. This gene encodes the transcription factor HIF2α, which stimulates production of red blood cells and thus increases the concentration of hemoglobin in blood. Second, in a separate cohort of Tibetans residing at 4,200 m, we identified 31 EPAS1 SNPs in high linkage disequilibrium that correlated significantly with hemoglobin concentration. The sex-adjusted hemoglobin concentration was, on average, 0.8 g/dL lower in the major allele homozygotes compared with the heterozygotes. These findings were replicated in a third cohort of Tibetans residing at 4,300 m. The alleles associating with lower hemoglobin concentrations were correlated with the signal from the GWADS study and were observed at greatly elevated frequencies in the Tibetan cohorts compared with the Han. High hemoglobin concentrations are a cardinal feature of chronic mountain sickness offering one plausible mechanism for selection. Alternatively, as EPAS1 is pleiotropic in its effects, selection may have operated on some other aspect of the phenotype. Whichever of these explanations is correct, the evidence for genetic selection at the EPAS1 locus from the GWADS study is supported by the replicated studies associating function with the allelic variants.


PLOS Genetics | 2009

A Genome-Wide Investigation of SNPs and CNVs in Schizophrenia

Anna C. Need; Dongliang Ge; Michael E. Weale; Jessica M. Maia; Sheng Feng; Erin L. Heinzen; Woohyun Yoon; Dalia Kasperavičiūtė; Massimo Gennarelli; Warren J. Strittmatter; Cristian Bonvicini; Giuseppe Rossi; Karu Jayathilake; Philip A. Cola; Joseph P. McEvoy; Richard S.E. Keefe; Elizabeth M. C. Fisher; Pamela L. St. Jean; Ina Giegling; Annette M. Hartmann; Hans-Jürgen Möller; Andreas Ruppert; Gillian M. Fraser; Caroline Crombie; Lefkos T. Middleton; David St Clair; Allen D. Roses; Pierandrea Muglia; Clyde Francks; Dan Rujescu

We report a genome-wide assessment of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) in schizophrenia. We investigated SNPs using 871 patients and 863 controls, following up the top hits in four independent cohorts comprising 1,460 patients and 12,995 controls, all of European origin. We found no genome-wide significant associations, nor could we provide support for any previously reported candidate gene or genome-wide associations. We went on to examine CNVs using a subset of 1,013 cases and 1,084 controls of European ancestry, and a further set of 60 cases and 64 controls of African ancestry. We found that eight cases and zero controls carried deletions greater than 2 Mb, of which two, at 8p22 and 16p13.11-p12.4, are newly reported here. A further evaluation of 1,378 controls identified no deletions greater than 2 Mb, suggesting a high prior probability of disease involvement when such deletions are observed in cases. We also provide further evidence for some smaller, previously reported, schizophrenia-associated CNVs, such as those in NRXN1 and APBA2. We could not provide strong support for the hypothesis that schizophrenia patients have a significantly greater “load” of large (>100 kb), rare CNVs, nor could we find common CNVs that associate with schizophrenia. Finally, we did not provide support for the suggestion that schizophrenia-associated CNVs may preferentially disrupt genes in neurodevelopmental pathways. Collectively, these analyses provide the first integrated study of SNPs and CNVs in schizophrenia and support the emerging view that rare deleterious variants may be more important in schizophrenia predisposition than common polymorphisms. While our analyses do not suggest that implicated CNVs impinge on particular key pathways, we do support the contribution of specific genomic regions in schizophrenia, presumably due to recurrent mutation. On balance, these data suggest that very few schizophrenia patients share identical genomic causation, potentially complicating efforts to personalize treatment regimens.


Nature Genetics | 2001

Population genetic structure of variable drug response

James F. Wilson; Michael E. Weale; Alice Smith; Fiona Gratrix; Benjamin Fletcher; Mark G. Thomas; Neil Bradman; David B. Goldstein

Geographic patterns of genetic variation, including variation at drug metabolizing enzyme (DME) loci and drug targets, indicate that geographic structuring of inter-individual variation in drug response may occur frequently. This raises two questions: how to represent human population genetic structure in the evaluation of drug safety and efficacy, and how to relate this structure to drug response. We address these by (i) inferring the genetic structure present in a heterogeneous sample and (ii) comparing the distribution of DME variants across the inferred genetic clusters of individuals. We find that commonly used ethnic labels are both insufficient and inaccurate representations of the inferred genetic clusters, and that drug-metabolizing profiles, defined by the distribution of DME variants, differ significantly among the clusters. We note, however, that the complexity of human demographic history means that there is no obvious natural clustering scheme, nor an obvious appropriate degree of resolution. Our comparison of drug-metabolizing profiles across the inferred clusters establishes a framework for assessing the appropriate level of resolution in relating genetic structure to drug response.


Nature Neuroscience | 2014

Genetic variability in the regulation of gene expression in ten regions of the human brain

Adaikalavan Ramasamy; Daniah Trabzuni; Sebastian Guelfi; Vibin Varghese; Colin Smith; Robert Walker; Tisham De; Lachlan Coin; Rohan de Silva; Mark R. Cookson; Andrew Singleton; John Hardy; Mina Ryten; Michael E. Weale

Germ-line genetic control of gene expression occurs via expression quantitative trait loci (eQTLs). We present a large, exon-specific eQTL data set covering ten human brain regions. We found that cis-eQTL signals (within 1 Mb of their target gene) were numerous, and many acted heterogeneously among regions and exons. Co-regulation analysis of shared eQTL signals produced well-defined modules of region-specific co-regulated genes, in contrast to standard coexpression analysis of the same samples. We report cis-eQTL signals for 23.1% of catalogued genome-wide association study hits for adult-onset neurological disorders. The data set is publicly available via public data repositories and via http://www.braineac.org/. Our study increases our understanding of the regulation of gene expression in the human brain and will be of value to others pursuing functional follow-up of disease-associated variants.


Nature | 2014

Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease

Carlos Cruchaga; Celeste M. Karch; Sheng Chih Jin; Bruno A. Benitez; Yefei Cai; Rita Guerreiro; Oscar Harari; Joanne Norton; John Budde; Sarah Bertelsen; Amanda T. Jeng; Breanna Cooper; Tara Skorupa; David Carrell; Denise Levitch; Simon Hsu; Jiyoon Choi; Mina Ryten; John Hardy; Daniah Trabzuni; Michael E. Weale; Adaikalavan Ramasamy; Colin Smith; Celeste Sassi; Jose Bras; J. Raphael Gibbs; Dena Hernandez; Michelle K. Lupton; John Powell; Paola Forabosco

Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimers disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case–control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer’s disease in seven independent case–control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer’s disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer’s disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer’s disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.


Lancet Neurology | 2010

Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study

Aleksey Shatunov; Kin Mok; Stephen Newhouse; Michael E. Weale; Bradley Smith; Caroline Vance; Lauren Johnson; Jan H. Veldink; Michael A. van Es; Leonard H. van den Berg; Wim Robberecht; Philip Van Damme; Orla Hardiman; Anne Farmer; Cathryn M. Lewis; Amy W. Butler; Olubunmi Abel; Peter Andersen; Isabella Fogh; Vincenzo Silani; Adriano Chiò; Bryan J. Traynor; Judith Melki; Vincent Meininger; John Landers; Peter McGuffin; Jonathan D. Glass; Hardev Pall; P. Nigel Leigh; John Hardy

Summary Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of motor neurons that results in progressive weakness and death from respiratory failure, commonly within about 3 years. Previous studies have shown association of a locus on chromosome 9p with ALS and linkage with ALS–frontotemporal dementia. We aimed to test whether this genomic region is also associated with ALS in an independent set of UK samples, and to identify risk factors associated with ALS in a further genome-wide association study that combined data from the independent analysis with those from other countries. Methods We collected samples from patients with sporadic ALS from 20 UK hospitals and obtained UK control samples from the control groups of the Depression Case Control study, the Bipolar Affective Case Control Study, and the British 1958 birth cohort DNA collection. Genotyping of DNA in this independent analysis was done with Illumina HumanHap550 BeadChips. We then undertook a joint genome-wide analysis that combined data from the independent set with published data from the UK, USA, Netherlands, Ireland, Italy, France, Sweden, and Belgium. The threshold for significance was p=0·05 in the independent analysis, because we were interested in replicating a small number of previously reported associations, whereas the Bonferroni-corrected threshold for significance in the joint analysis was p=2·20×10−7 Findings After quality control, samples were available from 599 patients and 4144 control individuals in the independent set. In this analysis, two single nucleotide polymorphisms in a locus on chromosome 9p21.2 were associated with ALS: rs3849942 (p=2·22×10−6; odds ratio [OR] 1·39, 95% CI 1·21–1·59) and rs2814707 (p=3·32×10−6; 1·38, 1·20–1·58). In the joint analysis, which included samples from 4312 patients with ALS and 8425 control individuals, rs3849942 (p=4·64×10−10; OR 1·22, 95% CI 1·15–1·30) and rs2814707 (p=4·72×10−10; 1·22, 1·15–1·30) were associated with ALS. Interpretation We have found strong evidence of a genetic association of two single nucleotide polymorphisms on chromosome 9 with sporadic ALS, in line with findings from previous independent GWAS of ALS and linkage studies of ALS–frontotemporal dementia. Our findings together with these earlier findings suggest that genetic variation at this locus on chromosome 9 causes sporadic ALS and familial ALS–frontotemporal dementia. Resequencing studies and then functional analysis should be done to identify the defective gene. Funding ALS Therapy Alliance, the Angel Fund, the Medical Research Council, the Motor Neurone Disease Association of Great Britain and Northern Ireland, the Wellcome Trust, and the National Institute for Health Research Dementias and Neurodegenerative Diseases Research Network (DeNDRoN).


American Journal of Psychiatry | 2010

Genome-Wide Association Study of Major Recurrent Depression in the U.K. Population

Cathryn M. Lewis; Mandy Y.M. Ng; Amy W. Butler; Sarah Cohen-Woods; Rudolf Uher; Katrina Pirlo; Michael E. Weale; Alexandra Schosser; Ursula M. Paredes; Margarita Rivera; Nicholas John Craddock; Michael John Owen; Lisa A. Jones; Ian Richard Jones; Ania Korszun; Katherine J. Aitchison; Jianxin Shi; John P. Quinn; Alasdair MacKenzie; Peter Vollenweider; Gérard Waeber; Simon Heath; Mark Lathrop; Pierandrea Muglia; Michael R. Barnes; John C. Whittaker; Frederica Tozzi; Florian Holsboer; Martin Preisig; Anne Farmer

OBJECTIVE Studies of major depression in twins and families have shown moderate to high heritability, but extensive molecular studies have failed to identify susceptibility genes convincingly. To detect genetic variants contributing to major depression, the authors performed a genome-wide association study using 1,636 cases of depression ascertained in the U.K. and 1,594 comparison subjects screened negative for psychiatric disorders. METHOD Cases were collected from 1) a case-control study of recurrent depression (the Depression Case Control [DeCC] study; N=1346), 2) an affected sibling pair linkage study of recurrent depression (probands from the Depression Network [DeNT] study; N=332), and 3) a pharmacogenetic study (the Genome-Based Therapeutic Drugs for Depression [GENDEP] study; N=88). Depression cases and comparison subjects were genotyped at Centre National de Génotypage on the Illumina Human610-Quad BeadChip. After applying stringent quality control criteria for missing genotypes, departure from Hardy-Weinberg equilibrium, and low minor allele frequency, the authors tested for association to depression using logistic regression, correcting for population ancestry. RESULTS Single nucleotide polymorphisms (SNPs) in BICC1 achieved suggestive evidence for association, which strengthened after imputation of ungenotyped markers, and in analysis of female depression cases. A meta-analysis of U.K. data with previously published results from studies in Munich and Lausanne showed some evidence for association near neuroligin 1 (NLGN1) on chromosome 3, but did not support findings at BICC1. CONCLUSIONS This study identifies several signals for association worthy of further investigation but, as in previous genome-wide studies, suggests that individual gene contributions to depression are likely to have only minor effects, and very large pooled analyses will be required to identify them.


Lancet Neurology | 2007

Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and seizure types: a case-control study.

Gianpiero L. Cavalleri; Michael E. Weale; Rinki Singh; John Lynch; Bronwyn E. Grinton; Cassandra Szoeke; Kevin Murphy; Peter Kinirons; Deirdre O'Rourke; Dongliang Ge; Chantal Depondt; Kristl G. Claeys; Massimo Pandolfo; Curtis Gumbs; Nicole M. Walley; James O McNamara; John C. Mulley; Kristen N. Linney; Leslie J. Sheffield; Rodney A. Radtke; Sarah K. Tate; Stephanie L. Chissoe; Rachel A. Gibson; David A. Hosford; Alice Stanton; Td Graves; Michael G. Hanna; Kai Eriksson; Anne-Mari Kantanen; Reetta Kälviäinen

BACKGROUND The Epilepsy Genetics (EPIGEN) Consortium was established to undertake genetic mapping analyses with augmented statistical power to detect variants that influence the development and treatment of common forms of epilepsy. METHODS We examined common variations across 279 prime candidate genes in 2717 case and 1118 control samples collected at four independent research centres (in the UK, Ireland, Finland, and Australia). Single nucleotide polymorphism (SNP) and combined set-association analyses were used to examine the contribution of genetic variation in the candidate genes to various forms of epilepsy. FINDINGS We did not identify clear, indisputable common genetic risk factors that contribute to selected epilepsy subphenotypes across multiple populations. Nor did we identify risk factors for the general all-epilepsy phenotype. However, set-association analysis on the most significant p values, assessed under permutation, suggested the contribution of numerous SNPs to disease predisposition in an apparent population-specific manner. Variations in the genes KCNAB1, GABRR2, KCNMB4, SYN2, and ALDH5A1 were most notable. INTERPRETATION The underlying genetic component to sporadic epilepsy is clearly complex. Results suggest that many SNPs contribute to disease predisposition in an apparently population-specific manner. However, subtle differences in phenotyping across cohorts, combined with a poor understanding of how the underlying genetic component to epilepsy aligns with current phenotypic classifications, might also account for apparent population-specific genetic risk factors. Variations across five genes warrant further study in independent cohorts to clarify the tentative association.


Current Biology | 2001

Population genomics: Linkage disequilibrium holds the key

David B. Goldstein; Michael E. Weale

Current efforts to find disease-causing genes depend on patterns of linkage disequilibrium in human populations. Recent work has shown that linkage disequilibrium can extend over much larger genomic regions than expected, and that the patterns of linkage disequilibrium can differ markedly among populations.

Collaboration


Dive into the Michael E. Weale's collaboration.

Top Co-Authors

Avatar

David B. Goldstein

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mina Ryten

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Mark G. Thomas

University College London

View shared research outputs
Top Co-Authors

Avatar

John Hardy

University College London

View shared research outputs
Top Co-Authors

Avatar

Neil Bradman

University College London

View shared research outputs
Top Co-Authors

Avatar

Daniah Trabzuni

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas W. Wood

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Smith

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge