Michael Eckhaus
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Eckhaus.
Journal of Clinical Investigation | 2000
Oksana Gavrilova; Bernice Marcus-Samuels; David Graham; Jason K. Kim; Gerald I. Shulman; Arthur L. Castle; Charles Vinson; Michael Eckhaus; Marc L. Reitman
In lipoatrophic diabetes, a lack of fat is associated with insulin resistance and hyperglycemia. This is in striking contrast to the usual association of diabetes with obesity. To understand the underlying mechanisms, we transplanted adipose tissue into A-ZIP/F-1 mice, which have a severe form of lipoatrophic diabetes. Transplantation of wild-type fat reversed the hyperglycemia, dramatically lowered insulin levels, and improved muscle insulin sensitivity, demonstrating that the diabetes in A-ZIP/F-1 mice is caused by the lack of adipose tissue. All aspects of the A-ZIP/F-1 phenotype including hyperphagia, hepatic steatosis, and somatomegaly were either partially or completely reversed. However, the improvement in triglyceride and FFA levels was modest. Donor fat taken from parametrial and subcutaneous sites was equally effective in reversing the phenotype. The beneficial effects of transplantation were dose dependent and required near-physiological amounts of transplanted fat. Transplantation of genetically modified fat into A-ZIP/F-1 mice is a new and powerful technique for studying adipose physiology and the metabolic and endocrine communication between adipose tissue and the rest of the body.
Cell | 2003
Arkady Celeste; Simone Difilippantonio; Michael J. Difilippantonio; Oscar Fernandez-Capetillo; Duane R. Pilch; Olga A. Sedelnikova; Michael Eckhaus; Thomas Ried; William M. Bonner; André Nussenzweig
Histone H2AX becomes phosphorylated in chromatin domains flanking sites of DNA double-strand breakage associated with gamma-irradiation, meiotic recombination, DNA replication, and antigen receptor rearrangements. Here, we show that loss of a single H2AX allele compromises genomic integrity and enhances the susceptibility to cancer in the absence of p53. In comparison with heterozygotes, tumors arise earlier in the H2AX homozygous null background, and H2AX(-/-) p53(-/-) lymphomas harbor an increased frequency of clonal nonreciprocal translocations and amplifications. These include complex rearrangements that juxtapose the c-myc oncogene to antigen receptor loci. Restoration of the H2AX null allele with wild-type H2AX restores genomic stability and radiation resistance, but this effect is abolished by substitution of the conserved serine phosphorylation sites in H2AX with alanine or glutamic acid residues. Our results establish H2AX as genomic caretaker that requires the function of both gene alleles for optimal protection against tumorigenesis.
Nature Genetics | 1999
Lucio H. Castilla; Lisa Garrett; Neeraj Adya; Donald Orlic; Amalia Dutra; Stacie M. Anderson; Jennie W. Owens; Michael Eckhaus; David M. Bodine; P. Paul Liu
The fusion gene Cbfb - MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia
Nature Genetics | 2003
Pamela M. Pollock; Karine A. Cohen-Solal; Raman Sood; Jin Namkoong; Jeffrey J. Martino; Aruna Koganti; Hua Zhu; Christiane M. Robbins; Izabela Makalowska; Seung Shick Shin; Yarí E. Marín; Kathleen G. Roberts; Laura M. Yudt; Amy Chen; Jun Cheng; Arturo Incao; Heather W. Pinkett; Christopher L. Graham; Karen J. Dunn; Steven M. Crespo-Carbone; Kerine R. Mackason; Kevin Ryan; Daniel Sinsimer; James S. Goydos; Kenneth R. Reuhl; Michael Eckhaus; Paul S. Meltzer; William J. Pavan; Jeffrey M. Trent; Suzie Chen
To gain insight into melanoma pathogenesis, we characterized an insertional mouse mutant, TG3, that is predisposed to develop multiple melanomas. Physical mapping identified multiple tandem insertions of the transgene into intron 3 of Grm1 (encoding metabotropic glutamate receptor 1) with concomitant deletion of 70 kb of intronic sequence. To assess whether this insertional mutagenesis event results in alteration of transcriptional regulation, we analyzed Grm1 and two flanking genes for aberrant expression in melanomas from TG3 mice. We observed aberrant expression of only Grm1. Although we did not detect its expression in normal mouse melanocytes, Grm1 was ectopically expressed in the melanomas from TG3 mice. To confirm the involvement of Grm1 in melanocytic neoplasia, we created an additional transgenic line with Grm1 expression driven by the dopachrome tautomerase promoter. Similar to the original TG3, the Tg(Grm1)EPv line was susceptible to melanoma. In contrast to human melanoma, these transgenic mice had a generalized hyperproliferation of melanocytes with limited transformation to fully malignant metastasis. We detected expression of GRM1 in a number of human melanoma biopsies and cell lines but not in benign nevi and melanocytes. This study provides compelling evidence for the importance of metabotropic glutamate signaling in melanocytic neoplasia.
Nature Cell Biology | 2005
Simone Difilippantonio; Arkady Celeste; Oscar Fernandez-Capetillo; Hua-Tang Chen; Bernardo Reina San Martin; François Van Laethem; Yongping Yang; Galina V. Petukhova; Michael Eckhaus; Lionel Feigenbaum; Katia Manova; Michael J. Kruhlak; R. Daniel Camerini-Otero; Shyam K. Sharan; Michel C. Nussenzweig; André Nussenzweig
Nijmegen breakage syndrome (NBS) is a chromosomal fragility disorder that shares clinical and cellular features with ataxia telangiectasia. Here we demonstrate that Nbs1-null B cells are defective in the activation of ataxia-telangiectasia-mutated (Atm) in response to ionizing radiation, whereas ataxia-telangiectasia- and Rad3-related (Atr)-dependent signalling and Atm activation in response to ultraviolet light, inhibitors of DNA replication, or hypotonic stress are intact. Expression of the main human NBS allele rescues the lethality of Nbs1−/− mice, but leads to immunodeficiency, cancer predisposition, a defect in meiotic progression in females and cell-cycle checkpoint defects that are associated with a partial reduction in Atm activity. The Mre11 interaction domain of Nbs1 is essential for viability, whereas the Forkhead-associated (FHA) domain is required for T-cell and oocyte development and efficient DNA damage signalling. Reconstitution of Nbs1 knockout mice with various mutant isoforms demonstrates the biological impact of impaired Nbs1 function at the cellular and organismal level.
Journal of Virology | 2003
Franck Lemiale; Wing-Pui Kong; Levent M. Akyürek; Xu Ling; Yue Huang; Bimal K. Chakrabarti; Michael Eckhaus; Gary J. Nabel
ABSTRACT Replication-defective adenovirus (ADV) vectors represent a promising potential platform for the development of a vaccine for AIDS. Although this vector is typically administered intramuscularly, it would be desirable to induce mucosal immunity by delivery through alternative routes. In this study, the immune response and biodistribution of ADV vectors delivered by different routes were evaluated. ADV vectors expressing human immunodeficiency virus type 1 (HIV-1) Gag, Pol, and Env were delivered intramuscularly or intranasally into mice. Intranasal immunization induced greater HIV-specific immunoglobulin A (IgA) responses in mucosal secretions and sera than in animals with intramuscular injection, which showed stronger systemic cellular and IgG responses. Administration of the vaccine through an intranasal route failed to overcome prior ADV immunity. Animals exposed to ADV prior to vaccination displayed substantially reduced cellular and humoral immune responses to HIV antigens in both groups, though the reduction was greater in animals immunized intranasally. This inhibition was partially overcome by priming with a DNA expression vector expressing HIV-1 Gag, Pol, and Env before boosting with the viral vector. Biodistribution of recombinant adenovirus (rADV) vectors administered intranasally revealed infection of the central nervous system, specifically in the olfactory bulb, possibly via retrograde transport by olfactory neurons in the nasal epithelium, which may limit the utility of this route of delivery of ADV vector-based vaccines.
Journal of Immunology | 2004
Carl G. Feng; Carmen M. Collazo-Custodio; Michael Eckhaus; Sara Hieny; Yasmine Belkaid; Karen L. Elkins; Dragana Jankovic; Gregory A. Taylor; Alan Sher
Although IFN-γ is essential for host control of mycobacterial infection, the mechanisms by which the cytokine restricts pathogen growth are only partially understood. LRG-47 is an IFN-inducible GTP-binding protein previously shown to be required for IFN-γ-dependent host resistance to acute Listeria monocytogenes and Toxoplasma gondii infections. To examine the role of LRG-47 in control of mycobacterial infection, LRG-47−/− and wild-type mice were infected with Mycobacterium avium, and host responses were analyzed. LRG-47 protein was strongly induced in livers of infected wild-type animals in an IFN-γ-dependent manner. LRG-47−/− mice were unable to control bacterial replication, but survived the acute phase, succumbing 11–16 wk postinfection. IFN-γ-primed, bone marrow-derived macrophages from LRG-47−/− and wild-type animals produced equivalent levels of TNF and NO upon M. avium infection in vitro and developed similar intracellular bacterial loads. In addition, priming for IFN-γ production was observed in T cells isolated from infected LRG-47−/− mice. Importantly, however, mycobacterial granulomas in LRG-47−/− mice showed a marked lymphocyte deficiency. Further examination of these animals revealed a profound systemic lymphopenia and anemia triggered by infection. As LRG47−/− T lymphocytes were found to both survive and confer resistance to M. avium in recipient recombinase-activating gene-2−/− mice, the defect in cellular response and bacterial control in LRG-47−/− mice may also depend on a factor(s) expressed in a nonlymphocyte compartment. These findings establish a role for LRG-47 in host control of mycobacteria and demonstrate that in the context of the IFN-γ response to persistent infection, LRG-47 can have downstream regulatory effects on lymphocyte survival.
Cell Metabolism | 2013
Manik C. Ghosh; De-Liang Zhang; Suh Young Jeong; Gennadiy Kovtunovych; Hayden Ollivierre-Wilson; Audrey Noguchi; Tiffany Tu; Thomas Senecal; Gabrielle Robinson; Daniel R. Crooks; Wing Hang Tong; Kavitha Ramaswamy; Anamika Singh; Brian B. Graham; Rubin M. Tuder; Zu Xi Yu; Michael Eckhaus; Jaekwon Lee; Danielle A. Springer; Tracey A. Rouault
Iron regulatory proteins (Irps) 1 and 2 posttranscriptionally control the expression of transcripts that contain iron-responsive element (IRE) sequences, including ferritin, ferroportin, transferrin receptor, and hypoxia-inducible factor 2α (HIF2α). We report here that mice with targeted deletion of Irp1 developed pulmonary hypertension and polycythemia that was exacerbated by a low-iron diet. Hematocrits increased to 65% in iron-starved mice, and many polycythemic mice died of abdominal hemorrhages. Irp1 deletion enhanced HIF2α protein expression in kidneys of Irp1(-/-) mice, which led to increased erythropoietin (EPO) expression, polycythemia, and concomitant tissue iron deficiency. Increased HIF2α expression in pulmonary endothelial cells induced high expression of endothelin-1, likely contributing to the pulmonary hypertension of Irp1(-/-) mice. Our results reveal why anemia is an early physiological consequence of iron deficiency, highlight the physiological significance of Irp1 in regulating erythropoiesis and iron distribution, and provide important insights into the molecular pathogenesis of pulmonary hypertension.
PLOS Pathogens | 2010
Mahtab Moayeri; Devorah Crown; Zachary L. Newman; Shu Okugawa; Michael Eckhaus; Christophe Cataisson; Shihui Liu; Inka Sastalla; Stephen H. Leppla
Bacillus anthracis infects hosts as a spore, germinates, and disseminates in its vegetative form. Production of anthrax lethal and edema toxins following bacterial outgrowth results in host death. Macrophages of inbred mouse strains are either sensitive or resistant to lethal toxin depending on whether they express the lethal toxin responsive or non-responsive alleles of the inflammasome sensor Nlrp1b (Nlrp1bS/S or Nlrp1bR/R, respectively). In this study, Nlrp1b was shown to affect mouse susceptibility to infection. Inbred and congenic mice harboring macrophage-sensitizing Nlrp1bS/S alleles (which allow activation of caspase-1 and IL-1β release in response to anthrax lethal toxin challenge) effectively controlled bacterial growth and dissemination when compared to mice having Nlrp1bR/R alleles (which cannot activate caspase-1 in response to toxin). Nlrp1bS-mediated resistance to infection was not dependent on the route of infection and was observed when bacteria were introduced by either subcutaneous or intravenous routes. Resistance did not occur through alterations in spore germination, as vegetative bacteria were also killed in Nlrp1bS/S mice. Resistance to infection required the actions of both caspase-1 and IL-1β as Nlrp1bS/S mice deleted of caspase-1 or the IL-1 receptor, or treated with the Il-1 receptor antagonist anakinra, were sensitized to infection. Comparison of circulating neutrophil levels and IL-1β responses in Nlrp1bS/S,Nlrp1bR/ R and IL-1 receptor knockout mice implicated Nlrp1b and IL-1 signaling in control of neutrophil responses to anthrax infection. Neutrophil depletion experiments verified the importance of this cell type in resistance to B. anthracis infection. These data confirm an inverse relationship between murine macrophage sensitivity to lethal toxin and mouse susceptibility to spore infection, and establish roles for Nlrp1bS, caspase-1, and IL-1β in countering anthrax infection.
Annals of the New York Academy of Sciences | 1999
Marc L. Reitman; Mark M. Mason; Jaideep Moitra; Oksana Gavrilova; Bernice Marcus-Samuels; Michael Eckhaus; Charles Vinson
ABSTRACT: The human disease lipoatrophic (or lipodystrophic) diabetes is a rare syndrome in which a deficiency of adipose tissue is associated with Type 2 diabetes. This disease is an interesting contrast to the usual situation in which diabetes is associated with obesity, an excess of fat. Aside from obesity, patients with lipodystrophic diabetes have the other features associated with Metabolic Syndrome X, including hypertension and dyslipidemia. The contrast between diabetes with a lack of fat and diabetes with an excess of fat provides an opportunity to study the mechanisms causing Type 2 diabetes and its complications. Recently, three laboratories have produced transgenic mice that are deficient in white adipose tissue. These mice have insulin resistance and other features of lipoatrophic diabetes, and are a faithful model for the human disease. Here we review the different murine models of fat ablation and compare the murine and human diseases, addressing the questions: Is the lack of fat causative of the diabetes, and if so by what mechanism? How could the other clinical features be explained mechanistically? And finally, what can be gleaned about insight into treatment options?