Michael Eiden
Medical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Eiden.
Nature Medicine | 2012
Georgios K. Paschos; Salam Ibrahim; Wen-Liang Song; Takeshige Kunieda; Gregory R. Grant; Teresa M. Reyes; Christopher A. Bradfield; Cheryl H Vaughan; Michael Eiden; Mojgan Masoodi; Julian L. Griffin; Fenfen Wang; John A. Lawson; Garret A. FitzGerald
Adipocytes store excess energy in the form of triglycerides and signal the levels of stored energy to the brain. Here we show that adipocyte-specific deletion of Arntl (also known as Bmal1), a gene encoding a core molecular clock component, results in obesity in mice with a shift in the diurnal rhythm of food intake, a result that is not seen when the gene is disrupted in hepatocytes or pancreatic islets. Changes in the expression of hypothalamic neuropeptides that regulate appetite are consistent with feedback from the adipocyte to the central nervous system to time feeding behavior. Ablation of the adipocyte clock is associated with a reduced number of polyunsaturated fatty acids in adipocyte triglycerides. This difference between mutant and wild-type mice is reflected in the circulating concentrations of polyunsaturated fatty acids and nonesterified polyunsaturated fatty acids in hypothalamic neurons that regulate food intake. Thus, this study reveals a role for the adipocyte clock in the temporal organization of energy regulation, highlights timing as a modulator of the adipocyte-hypothalamic axis and shows the impact of timing of food intake on body weight.
Analytical Chemistry | 2010
Mojgan Masoodi; Michael Eiden; Albert Koulman; David Spaner; Dietrich A. Volmer
In the present work we describe the development of an analytical technique for simultaneous profiling of over 100 biochemically related lipid mediators in biological samples. A multistep procedure was implemented to extract eicosanoids and other bioactive lipids from the biological matrix, chromatographically separate them using fast reversed-phase liquid chromatography, tentatively identify new candidate eicosanoids through a matching process of retention times, isotope distribution patterns, and high-resolution orbitrap MS/MS fragmentation patterns, and subsequently quantify tentative candidates by means of analytical reference standards. Key new aspects of this profiling technique included the classification of bioactive lipids into 12 groups according to their calculated exact masses and the development of optimized liquid chromatographic conditions for these groups to achieve sufficient separation of the numerous isobaric and isomeric species, many of which exhibited virtually identical collision-induced dissociation behavior. Importantly, no analytical standards were required at this screening stage of the assay, and tentative identifications were achieved by matching results to selected reference species from each of the groups. The analytical figures of merit for the orbitrap assay such as linear dynamic range, limit of detection, limit of quantitation, and precision demonstrated that the performance of the assay was very similar to that of a quadrupole linear ion trap assay, which was used for validation purposes. The method allowed us to examine eicosanoid profiles within the signaling cascade in chronic lymphocytic leukemia (CLL) cells under basal conditions and following arachidonic acid stimulation. The preliminary screening based on high-resolution tandem mass spectrometry data along with isotope pattern and retention time matching revealed the presence of 15 bioactive lipids, belonging to a range of prostaglandin, leukotriene, and hydroxy and epoxy fatty acid lipid mediators produced by CLL cells.
PLOS ONE | 2013
Mojgan Masoodi; D S Pearl; Michael Eiden; Janis K. Shute; James Brown; Philip C. Calder; T M Trebble
Objectives Ulcerative colitis (UC) is a relapsing inflammatory disorder of unconfirmed aetiology, variable severity and clinical course, characterised by progressive histological inflammation and with elevation of eicosanoids which have a known pathophysiological role in inflammation. Therapeutic interventions targetting eicosanoids (5-aminosalicylates (ASA)) are effective first line and adjunctive treatments in mild-moderate UC for achieving and sustaining clinical remission. However, the variable clinical response to 5-ASA and frequent deterioration in response to cyclo-oxygenase (COX) inhibitors, has prompted an in depth simultaneous evaluation of multiple lipid mediators (including eicosanoids) within the inflammatory milieu in UC. We hypothesised that severity of inflammation is associated with alteration of lipid mediators, in relapsing UC. Design Study was case-control design. Mucosal lipid mediators were determined by LC-MS/MS lipidomics analysis on mucosal biopsies taken from patients attending outpatients with relapsing UC. Univariate and multivariate statistical analyses were used to investigate the association of mucosal lipid mediators, with the disease state and severity graded histologically. Results Levels of PGE2, PGD2, TXB2, 5-HETE, 11-HETE, 12-HETE and 15-HETE are significantly elevated in inflamed mucosa and correlate with severity of inflammation, determined using validated histological scoring systems. Conclusions Our approach of capturing inflammatory mediator signature at different stages of UC by combining comprehensive lipidomics analysis and computational modelling could be used to classify and predict mild-moderate inflammation; however, predictive index is diminished in severe inflammation. This new technical approach could be developed to tailor drug treatments to patients with active UC, based on the mucosal lipid mediator profile.
Journal of Crohns & Colitis | 2014
D S Pearl; Mojgan Masoodi; Michael Eiden; Janine Brümmer; Darren R. Gullick; Tricia M. McKeever; Mark A. Whittaker; Harriet Nitch-Smith; James Brown; Janis K. Shute; Graham A. Mills; Philip C. Calder; T M Trebble
BACKGROUND AND AIMS The polyunsaturated fatty acids (PUFA) arachidonic acid (AA, n-6) and eicosapentaenoic acid (EPA, n-3) are precursors of eicosanoids and other lipid mediators which have critical roles in inflammation. The mediators formed from the different PUFA have different potencies. We hypothesised that metabolic changes associated with colonic mucosal inflammation would modify the bioavailability of the eicosanoid precursors AA and EPA. METHODS Colonic mucosa biopsies were obtained from patients with ulcerative colitis and from matched controls. Inflammation was graded endoscopically and histologically. Esterified and non-esterified fatty acids were determined within the biopsies using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry, respectively. RESULTS Biopsy samples were collected from 69 UC patients (54 providing both inflamed and non-inflamed mucosa) and 69 controls. Inflamed mucosa had higher AA (p<0.001) and lower EPA (p<0.010) contents and a higher AA:EPA ratio (p<0.001). Inflamed mucosa also had higher docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) and lower linoleic acid (LA) and α-linolenic acid (α-LNA) contents (all p<0.001), compared to non-inflamed and controls. There were significant correlations between severity of inflammation and contents of AA, DPA and DHA (positive correlations) and of LA, α-LNA and EPA (negative correlations). CONCLUSIONS Higher AA, AA:EPA ratio, DPA and DHA and lower LA, α-LNA and EPA are seen in inflamed mucosa in UC and correlate with severity of inflammation. This suggests an alteration in fatty acid metabolism in the inflamed gut mucosa, which may offer novel targets for intervention and should be considered if nutritional strategies are used.
Genome Medicine | 2013
Laura Wang; Keith Summerhill; Carmen Rodriguez-Canas; Ian Mather; Pinal S. Patel; Michael Eiden; Stephen Young; Nita G. Forouhi; Albert Koulman
A fully automated, high-throughput method was developed to profile the fatty acids of phospholipids from human plasma samples for application to a large epidemiological sample set (n > 25,000). We report here on the data obtained for the quality-control materials used with the first 860 batches, and the validation process used. The method consists of two robotic systems combined with gas chromatography, performing lipid extraction, phospholipid isolation, hydrolysis and derivatization to fatty-acid methyl esters, and on-line analysis. This is the first report showing that fatty-acid profiling is an achievable strategy for metabolic phenotyping in very large epidemiological and genetic studies.
Genome Medicine | 2015
Michael Eiden; Albert Koulman; Mensud Hatunic; James A. West; Steven Murfitt; Michael Osei; Claire Adams; Xinzhu Wang; Yajing Chu; Luke Marney; Lee D. Roberts; Stephen O’Rahilly; Robert K. Semple; David B. Savage; Julian L. Griffin
BackgroundEvidence from several recent metabolomic studies suggests that increased concentrations of triacylglycerols with shorter (14–16 carbon atoms), saturated fatty acids are associated with insulin resistance and the risk of type 2 diabetes. Although causality cannot be inferred from association studies, patients in whom the primary cause of insulin resistance can be genetically defined offer unique opportunities to address this challenge.MethodsWe compared metabolite profiles in patients with congenital lipodystrophy or loss-of-function insulin resistance (INSR gene) mutations with healthy controls.ResultsThe absence of significant differences in triacylglycerol species in the INSR group suggest that changes previously observed in epidemiological studies are not purely a consequence of insulin resistance. The presence of triacylglycerols with lower carbon numbers and high saturation in patients with lipodystrophy suggests that these metabolite changes may be associated with primary adipose tissue dysfunction. The observed pattern of triacylglycerol species is indicative of increased de novo lipogenesis in the liver. To test this we investigated the distribution of these triacylglycerols in lipoprotein fractions using size exclusion chromatography prior to mass spectrometry. This associated these triacylglycerols with very low-density lipoprotein particles, and hence release of triacylglycerols into the blood from the liver. To test further the hepatic origin of these triacylglycerols we induced de novo lipogenesis in the mouse, comparing ob/ob and wild-type mice on a chow or high fat diet, confirming that de novo lipogenesis induced an increase in relatively shorter, more saturated fatty acids.ConclusionsOverall, these studies highlight hepatic de novo lipogenesis in the pathogenesis of metabolic dyslipidaemia in states where energy intake exceeds the capacity of adipose tissue.
Journal of Neurochemistry | 2017
Marc-Olivier Trépanier; Michael Eiden; Delphine Morin-Rivron; Richard P. Bazinet; Mojgan Masoodi
The field of lipidomics has evolved vastly since its creation 15 years ago. Advancements in mass spectrometry have allowed for the identification of hundreds of intact lipids and lipid mediators. However, because of the release of fatty acids from the phospholipid membrane in the brain caused by ischemia, identifying the neurolipidome has been challenging. Microwave fixation has been shown to reduce the ischemia‐induced release of several lipid mediators. Therefore, this study aimed to develop a method combining high‐resolution tandem mass spectrometry (MS/MS), high‐energy head‐focused microwave fixation and statistical modeling, allowing for the measurement of intact lipids and lipid mediators in order to eliminate the ischemia‐induced release of fatty acids and identify the rat neurolipidome. In this study, we demonstrated the ischemia‐induced production of bioactive lipid mediators, and the reduction in variability using microwave fixation in combination with liquid chromatography (LC)–MS/MS. We have also illustrated for the first time that microwave fixation eliminates the alterations in intact lipid species following ischemia. While many phospholipid species were unchanged by ischemia, other intact lipid classes, such as diacylglycerol, were lower in concentration following microwave fixation compared to ischemia.
Molecular Nutrition & Food Research | 2014
Jane F. Ferguson; Claire K. Mulvey; Parth Patel; Rhia Shah; Julia Doveikis; Weiyu Zhang; Jennifer Tabita-Martinez; Karen Terembula; Michael Eiden; Albert Koulman; Julian L. Griffin; Nehal N. Mehta; Rachana Shah; Kathleen J. Propert; Wen-Liang Song; Muredach P. Reilly
Metabolomics | 2014
Albert Koulman; Philippa Prentice; Max Wong; Lee Matthews; Nicholas J. Bond; Michael Eiden; Julian L. Griffin; David B. Dunger
Gut | 2013
D S Pearl; Mojgan Masoodi; Michael Eiden; Janis K. Shute; Philip C. Calder; T M Trebble