Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael F. Belcourt is active.

Publication


Featured researches published by Michael F. Belcourt.


Human Gene Therapy | 2002

Tumor-Targeted Salmonella Expressing Cytosine Deaminase as an Anticancer Agent

Ivan King; David Bermudes; Stanley L. Lin; Michael F. Belcourt; Jeremy Pike; Kimberly Troy; Trung Le; Martina Ittensohn; John Mao; Wenshang Lang; Jacob D. Runyan; Xiang Luo; Zujin Li; Li-mou Zheng

The study was designed to evaluate whether TAPET-CD, an attenuated strain of Salmonella typhimurium expressing Escherichia coli cytosine deaminase (CD), was capable of converting nontoxic 5-fluorocytosine (5-FC) to the active antitumor agent 5-fluorouracil (5-FU). The antitumor effect of TAPET-CD plus 5-FC against subcutaneously implanted colon tumors was also evaluated. TAPET-CD was given to tumor-bearing mice by a single bolus intravenous administration followed with 5-FC by intraperitoneal administration. TAPET-CD accumulated in tumors at levels 1000-fold higher than that in normal tissues and high levels of 5-FU were detected in tumors in mice treated with both TAPET-CD and 5-FC. No 5-FU could be detected in normal tissues. Inhibition of tumor growth was observed in mice treated with either TAPET-CD alone or TAPET-CD in combination with 5-FC (TAPET-CD/5-FC), but not with 5-FC alone. TAPET-CD/5-FC inhibited tumor growth by 88%-96%, compared to TAPET-CD alone, which inhibited tumor growth by 38%-79%. These data suggest that tumor-targeting Salmonella could be used to deliver prodrug-converting enzyme selectively to tumors and produced anti-tumor effects when the corresponding prodrug was also given.


Advances in Enzyme Regulation | 1998

Exploring the mechanistic aspects of mitomycin antibiotic bioactivation in Chinese hamster ovary cells overexpressing NADPH:cytochrome C (P-450) reductase and DT-diaphorase

Michael F. Belcourt; Sara Rockwell; Alan C. Sartorelli

We have directly demonstrated the involvement of human NADPH: cytochrome c (P-450) reductase in the aerobic/hypoxic differential toxicity of mitomycin C and porfiromycin in living cells by varying only this enzyme in a transfected cell line. In the same manner, we have implicated rat DT-diaphorase in the aerobic and hypoxic activation of mitomycin C, but found only a minor role for this enzyme in the aerobic activation of porfiromycin. DT-Diaphorase does not cause the production of an aerobic/hypoxic differential toxicity by mitomycin C, but rather activates this agent through an oxygen insensitive pathway. The evidence suggests that DT-diaphorase activates mitomycin C more effectively than porfiromycin, with porfiromycin being preferentially activated through a one-electron reductive pathway. The therapeutic potential of mitomycin antibiotics in the treatment of cancer can be envisioned to be enhanced for those tumors containing elevated levels of the bioreductive enzymes. However, cytogenetic heterogeneity within the tumor cell population and the various environmental factors which impact on bioreductive enzyme function, including pH and oxygen tension, may subvert this approach. Moreover, if high tumor levels of a drug activating enzyme reflect high levels in the normal tissues of the patient, normal tissue damage may also be enhanced with possibly no improvement in the therapeutic ratio. Approaches utilizing gene therapy, whereby a specific bioreductive catalyst is introduced into the tumor cell population via a targeting vehicle to activate a particular prodrug, may be more effective in that not only will the prodrug of choice be specifically activated in the tumor, but the source of the catalyst, be it bacterial, rodent, or human, will not be important. In fact, in the case of DT-diaphorase and mitomycin C, the rat form of the enzyme could be advantageous because it is more effective in activating mitomycin C than is the human form of this enzyme. Assuming targeted gene delivery to malignant cells, a non-host enzyme which is more effective at activating mitomycin C than the analogous host enzyme might also result in less drug activation in normal tissue and, hence, less normal tissue toxicity.


Journal of Biological Chemistry | 1998

The intracellular location of NADH:cytochrome b5 reductase modulates the cytotoxicity of the mitomycins to Chinese hamster ovary cells.

Michael F. Belcourt; Sara Rockwell; Alan C. Sartorelli

NADH:cytochrome b 5reductase activates the mitomycins to alkylating intermediates in vitro. To investigate the intracellular role of this enzyme in mitomycin bioactivation, Chinese hamster ovary cell transfectants overexpressing rat NADH:cytochrome b 5 reductase were generated. An NADH:cytochrome b 5reductase-transfected clone expressed 9-fold more enzyme than did parental cells; the levels of other mitomycin-activating oxidoreductases were unchanged. Although this enzyme activates the mitomycins in vitro, its overexpression in living cells caused decreases in sensitivity to mitomycin C in air and decreases in sensitivity to porfiromycin under both air and hypoxia. Mitomycin C cytotoxicity under hypoxia was similar to parental cells. Because NADH:cytochrome b 5 reductase resides predominantly in the mitochondria of these cells, this enzyme may sequester these drugs in this compartment, thereby decreasing nuclear DNA alkylations and reducing cytotoxicity. A cytosolic form of NADH:cytochrome b 5 reductase was generated. Transfectants expressing the cytosolic enzyme were restored to parental line sensitivity to both mitomycin C and porfiromycin in air with marked increases in drug sensitivity under hypoxia. The results implicate NADH:cytochrome b 5 reductase in the differential bioactivation of the mitomycins and indicate that the subcellular site of drug activation can have complex effects on drug cytotoxicity.


Biochemical Pharmacology | 1996

Bioactivation of mitomycin antibiotics by aerobic and hypoxic Chinese hamster ovary cells overexpressing DT-diaphorase.

Michael F. Belcourt; Sara Rockwell; Alan C. Sartorelli

DT-Diaphorase catalyzes a two-electron reduction of mitomycin C (MC) and porfiromycin (POR) to reactive species. Many cell lines that overexpress DT-diaphorase and are sensitive to the mitomycins are protected from the aerobic cytotoxicity of these drugs by the DT-diaphorase inhibitor dicumarol. The cytoprotective properties of this relatively non-specific inhibitor, however, vanish under hypoxic conditions. To ascertain the role of DT-diaphorase in mitomycin bioactivation and cytotoxicity in living cells, a rat liver DT-diaphorase cDNA was transfected into Chinese hamster ovary cells. MC was equitoxic to the parental cells under oxygenated and hypoxic conditions. In contrast, POR was less toxic than MC to these cells under aerobic conditions, but significantly more toxic than MC under hypoxia. Two DT-diaphorase-transfected clones displayed increases in DT-diaphorase activity of 126- and 133-fold over parental cells. The activities of other oxidoreductases implicated in mitomycin bioreduction were unchanged. MC was more toxic to both DT-diaphorase-transfected lines than to parental cells; the toxicity of MC to the transfected lines was similar in air and hypoxia. POR was also more toxic to the DT-diaphorase-elevated clones than to parental cells under oxygenated conditions. Under hypoxia, however, the toxicity of POR to the transfected clones was unchanged from that of parental cells. The findings implicate DT-diaphorase in mitomycin bioactivation in living cells, but suggest that this enzyme does not contribute to the differential toxicity of MC or POR in air and hypoxia.


Molecular Pharmacology | 2011

Reduced level of ribonucleotide reductase R2 subunits increases dependence on homologous recombination repair of cisplatin-induced DNA damage.

Lin Zp; Yashang Lee; Lin F; Michael F. Belcourt; Peining Li; Joseph G. Cory; Peter M. Glazer; Alan C. Sartorelli

Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in the production of deoxyribonucleoside triphosphates (dNTPs) required for replicative and repair DNA synthesis. Mammalian RNR is a heteromeric enzyme consisting primarily of R1 and R2 subunits during the S phase of the cell cycle. We have shown previously that the presence of excess R2 subunits protects p53-deficient human colon cancer cells from cisplatin-induced DNA damage and replication stress. However, the mode of DNA repair influenced by changes in the level of the R2 subunit remained to be defined. In the present study, we demonstrated that depletion of BRCA1, an important factor of homologous recombination repair (HRR), preferentially sensitized stable R2-knockdown p53(−/−) HCT116 cells to the cytotoxicity of cisplatin and γ-H2AX induction. In accord with this finding, these R2-knockdown cells exhibited increased dependence on HRR, as evidenced by elevated levels of cisplatin-induced Rad51 foci and sister chromatid exchange frequency. Furthermore, stable knockdown of the R2 subunit also led to decreased cisplatin-induced gap-filling synthesis in nucleotide excision repair (NER) and a reduced dATP level in the G2/M phase of the cell cycle. These results suggest that an increased level of the R2 subunit extends the availability of dATP in the G2/M phase to promote the repair of NER-mediated single-strand gaps that are otherwise converted into double-strand breaks in the subsequent S phase. We propose that HRR becomes important for recovery from cisplatin-DNA lesions when the postexcision process of NER is restrained by reduced levels of the R2 subunit and dATP in p53-deficient cancer cells.


Biotechnology & Genetic Engineering Reviews | 2001

Tumour-Selective Salmonella-Based Cancer Therapy

David Bermudes; K. Brooks Low; John M. Pawelek; Ming Feng; Michael F. Belcourt; Li-Mou Zheng; Ivan King

Cancer therapies fail for several primary reasons; lack ofdrug effect on the cancerous tissue~ lack of selectivity for the cancerous tissue, andlor inadequate delivery to the target tissue. Drug effect and selectivity can be improved by increased understanding of molecular and cellular differences between cancer and normal tissues, thus enabling the design of drugs that potently affect cancer-specific molecular targets associated with malignant behaviour. Another approach is to improve the selective delivery ofanti-cancer agents to tumours. One approach is to use carriers that bind to cancer...specific targets, such as antibodies (Hall, 1995). However, most targeting approaches, even if selective, tend not to deliver sufficiently high concentrations of the agent to the tumour to induce significant therapeutic effects. Recent findings suggest that the pathogenic bacterium Sallnonella, when genetically modified, can be used to selectively deliver therapeutic agents to solid tumours at high concentrations (Pawelek et ai., 1997; Low et ai., 1999a). These attenuated bacteria are administered either systemically or locally, whereupon they typically replicate 1000 times greater in the tumour than in other tissue. The basis for preferential colonization and accumulation of Salmonella in tumours appears to include some of the same characteristics of tumours that provide resistance to drug and immune-based therapies (Bermudes et aI., 2000a,b). Why tumours are susceptible to Sabnonella is not well understood and probably includes a variety of factors. Poor penetration of components of the immune system, including antibodies, complement, CD8+ T-cells, granulocytes and macrophages


Biochemical Pharmacology | 2001

Bioreductive metabolism of mitomycin C in EMT6 mouse mammary tumor cells: cytotoxic and non-cytotoxic pathways, leading to different types of DNA adducts. The effect of dicumarol.

Yolanda Palom; Michael F. Belcourt; Li-Qun Tang; Shilpi S Mehta; Alan C. Sartorelli; Chris A. Pritsos; Karen L. Pritsos; Sara Rockwell; Maria Tomasz

The six DNA adducts formed in EMT6 mouse mammary tumor cells upon treatment with mitomycin C (MC) fall into two groups: (1) four guanine adducts of MC and (2) two guanine adducts derived from 2,7-diaminomitosene (2,7-DAM), the major reductive metabolite of MC. The two groups of adducts were proposed to originate from two pathways arising from reductive activation of MC: (a) direct alkylation of DNA and (b) formation of 2,7-DAM, which then alkylates DNA. The aim of this study was to test the validity of this proposal and to evaluate the significance of alkylation of DNA by 2,7-DAM. Treatment of the cells with 2,7-DAM itself yielded the same 2,7-DAM-guanine adducts as treatment with MC; however, 2,7-DAM was approximately 100-fold less cytotoxic than MC. The uptake and efflux of 2,7-DAM by EMT6 cells was comparable to that of MC, but 2,7-DAM alkylated DNA with higher efficiency than MC. These results validate the two proposed pathways and show that formation of 2,7-DAM-DNA adducts in MC-treated cells represents a relatively non-toxic pathway of reductive metabolism of MC. A selective stimulatory effect of dicumarol (DIC) on 2,7-DAM-DNA adduct formation in EMT6 cells treated with MC was also investigated. DIC had no effect on alkylation by MC in cell-free systems, nor did it have significant effects on adduct formation or cell survival for cells treated with 2,7-DAM. It is proposed that in the cell DIC stimulates a reductase enzyme located at subcellular sites where the activated MC species has no direct access to DNA and therefore is diverted into the non-cytotoxic pathway, which leads to the formation of 2,7-DAM and its adducts.


Advances in Enzyme Regulation | 1995

Preferential kill of hypoxic EMT6 mammary tumor cells by the bioreductive alkylating agent porfiromycin

Alan C. Sartorelli; Michael F. Belcourt; Susan R. Keyes; Chris A. Pritsos; Sara Rockwell

Hypoxic cells in solid tumors represent a therapeutically resistant population that limits the curability of many solid tumors by irradiation and by most chemotherapeutic agents. The oxygen deficit, however, creates an environment conducive to reductive processes; this results in a major exploitable difference between normal and neoplastic tissues. The mitomycin antibiotics can be reductively activated by a number of oxidoreductases, in a process required for the production of their therapeutic effects. Preferential activation of these drugs under hypoxia and greater toxicity to oxygen-deficient cells than to their oxygenated counterparts are obtained in most instances. The demonstration that mitomycin C and porfiromycin, used to kill the hypoxic fraction, in combination with irradiation, to eradicate the oxygenated portion of the tumor, produced enhanced cytodestructive effects on solid tumors in animals has led to the clinical evaluation of the mitomycins in combination with radiation therapy in patients with head and neck cancer. The findings from these clinical trials have demonstrated the value of directing a concerted therapeutic attack on the hypoxic fraction of solid tumors as an approach toward enhancing the curability of localized neoplasms by irradiation.


Oncology Research | 1994

Mitomycin C: a prototype bioreductive agent.

Alan C. Sartorelli; Michael F. Belcourt; Maria Tomasz; Bruce G. Haffty; J. J. Fischer; Sara Rockwell


Proceedings of the National Academy of Sciences of the United States of America | 1996

Differential toxicity of mitomycin C and porfiromycin to aerobic and hypoxic Chinese hamster ovary cells overexpressing human NADPH:cytochrome c (P-450) reductase

Michael F. Belcourt; Sara Rockwell; Alan C. Sartorelli

Collaboration


Dive into the Michael F. Belcourt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Tomasz

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge