Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael F. Criscitiello is active.

Publication


Featured researches published by Michael F. Criscitiello.


The EMBO Journal | 1994

CCAAT box binding protein NF-Y facilitates in vivo recruitment of upstream DNA binding transcription factors.

Kenneth L. Wright; Barbara J. Vilen; Yoshie Itoh-Lindstrom; T. L. Moore; Guoxuan Li; Michael F. Criscitiello; Patricia C. Cogswell; Jane B. Clarke; Jenny P.-Y. Ting

NF‐Y binds a CCAAT motif found in many eukaryotic polymerase II‐dependent promoters. In the HLA‐DRA promoter it has been demonstrated that stereo‐specific alignment between this motif and the upstream elements X1 and X2 is required for activation. To study the underlying mechanism for this requirement, a panel of transfected cell lines that maintained integrated, wild‐type and mutant promoters were analyzed by in vivo genomic footprinting. Cell lines harboring a mutated CCAAT element exhibited a loss of interactions at the CCAAT site, as expected, and no transcriptional activity. Most importantly, mutation of the CCAAT sequence nearly abolished in vivo binding at the X1 and X2 sites, while mutations of X1 and X2 had little effect on CCAAT box binding. However, X1 and X2 binding was interdependent. In vitro, X1 binding activities are known to be stabilized by NF‐Y binding. Interaction between NF‐Y and X box binding proteins was demonstrated by reciprocal co‐immunoprecipitation in the absence of DNA and co‐affinity purification in the presence of DNA. Collectively, these studies indicate that occupancy of the CCAAT element represents an early event affecting other protein‐DNA interactions and suggest that NF‐Y stabilizes and interacts with X box factors to mediate this function. These findings may represent a common theme among promoters containing a CCAAT element.


European Journal of Immunology | 2007

Four primordial immunoglobulin light chain isotypes, including λ and κ, identified in the most primitive living jawed vertebrates

Michael F. Criscitiello; Martin F. Flajnik

The discovery of a fourth immunoglobulin (Ig) light (L) chain isotype in sharks has revealed the origins and natural history of all vertebrate L chains. Phylogenetic comparisons have established orthology between this new shark L chain and the unique Xenopus L chain isotype σ. More importantly, inclusion of this new L chain family in phylogenetic analyses showed that all vertebrate L chains can be categorized into four ancestral clans originating prior to the emergence of cartilaginous fish: one restricted to elasmobranchs (σ‐cart/type I), one found in all cold‐blooded vertebrates (σ/teleost type 2/elasmobranch type IV), one in all groups except bony fish (λ/elasmobranch type II), and one in all groups except birds (κ/elasmobranch type III/teleost type 1 and 3). All four of these primordial L chain isotypes (σ, σ‐cart, λ and κ) have maintained separate V region identities since their emergence at least 450 million years ago, suggestive of an ancient physiological distinction of the L chains. We suggest that, based upon unique, discrete sizes of complementarity determining regions 1 and 2 and other features of the V region sequences, the different L chain isotypes arose to provide different functional conformations in the Ig binding site when they pair with heavy chains.


Journal of Immunology | 2002

Proteasome, Transporter Associated with Antigen Processing, and Class I Genes in the Nurse Shark Ginglymostoma cirratum: Evidence for a Stable Class I Region and MHC Haplotype Lineages

Yuko Ohta; E. Churchill McKinney; Michael F. Criscitiello; Martin F. Flajnik

Cartilaginous fish (e.g., sharks) are derived from the oldest vertebrate ancestor having an adaptive immune system, and thus are key models for examining MHC evolution. Previously, family studies in two shark species showed that classical class I (UAA) and class II genes are genetically linked. In this study, we show that proteasome genes LMP2 and LMP7, shark-specific LMP7-like, and the TAP1/2 genes are linked to class I/II. Functional LMP7 and LMP7-like genes, as well as multiple LMP2 genes or gene fragments, are found only in some sharks, suggesting that different sets of peptides might be generated depending upon inherited MHC haplotypes. Cosmid clones bearing the MHC-linked classical class I genes were isolated and shown to contain proteasome gene fragments. A non-MHC-linked LMP7 gene also was identified on another cosmid, but only two exons of this gene were detected, closely linked to a class I pseudogene (UAA-NC2); this region probably resulted from a recent duplication and translocation from the functional MHC. Tight linkage of proteasome and class I genes, in comparison with gene organizations of other vertebrates, suggests a primordial MHC organization. Another nonclassical class I gene (UAA-NC1) was detected that is linked neither to MHC nor to UAA-NC2; its high level of sequence similarity to UAA suggests that UAA-NC1 also was recently derived from UAA and translocated from MHC. These data further support the principle of a primordial class I region with few class I genes. Finally, multiple paternities in one family were demonstrated, with potential segregation distortions.


Journal of Immunology | 2010

Evolutionarily Conserved TCR Binding Sites, Identification of T Cells in Primary Lymphoid Tissues, and Surprising Trans-Rearrangements in Nurse Shark

Michael F. Criscitiello; Yuko Ohta; Mark Saltis; E. Churchill McKinney; Martin F. Flajnik

Cartilaginous fish are the oldest animals that generate RAG-based Ag receptor diversity. We have analyzed the genes and expressed transcripts of the four TCR chains for the first time in a cartilaginous fish, the nurse shark (Ginglymostoma cirratum). Northern blotting found TCR mRNA expression predominantly in lymphoid and mucosal tissues. Southern blotting suggested translocon-type loci encoding all four chains. Based on diversity of V and J segments, the expressed combinatorial diversity for γ is similar to that of human, α and β may be slightly lower, and δ diversity is the highest of any organism studied to date. Nurse shark TCRδ have long CDR3 loops compared with the other three chains, creating binding site topologies comparable to those of mammalian TCR in basic paratope structure; additionally, nurse shark TCRδ CDR3 are more similar to IgH CDR3 in length and heterogeneity than to other TCR chains. Most interestingly, several cDNAs were isolated that contained IgM or IgW V segments rearranged to other gene segments of TCRδ and α. Finally, in situ hybridization experiments demonstrate a conservation of both α/β and γ/δ T cell localization in the thymus across 450 million years of vertebrate evolution, with γ/δ TCR expression especially high in the subcapsular region. Collectively, these data make the first cellular identification of TCR-expressing lymphocytes in a cartilaginous fish.


Scientific Reports | 2015

Novel transcriptome assembly and improved annotation of the whiteleg shrimp (Litopenaeus vannamei), a dominant crustacean in global seafood mariculture

Noushin Ghaffari; Alejandro Sanchez-Flores; Ryan Doan; Karina D. Garcia-Orozco; Patricia L. Chen; Adrián Ochoa-Leyva; Alonso A. Lopez-Zavala; J. Salvador Carrasco; Chris Hong; Luis G. Brieba; Enrique Rudiño-Piñera; Philip D. Blood; J. E. Sawyer; Charles D. Johnson; Scott V. Dindot; Rogerio R. Sotelo-Mundo; Michael F. Criscitiello

We present a new transcriptome assembly of the Pacific whiteleg shrimp (Litopenaeus vannamei), the species most farmed for human consumption. Its functional annotation, a substantial improvement over previous ones, is provided freely. RNA-Seq with Illumina HiSeq technology was used to analyze samples extracted from shrimp abdominal muscle, hepatopancreas, gills and pleopods. We used the Trinity and Trinotate software suites for transcriptome assembly and annotation, respectively. The quality of this assembly and the affiliated targeted homology searches greatly enrich the curated transcripts currently available in public databases for this species. Comparison with the model arthropod Daphnia allows some insights into defining characteristics of decapod crustaceans. This large-scale gene discovery gives the broadest depth yet to the annotated transcriptome of this important species and should be of value to ongoing genomics and immunogenetic resistance studies in this shrimp of paramount global economic importance.


Immunogenetics | 2008

Evolutionarily conserved and divergent regions of the Autoimmune Regulator (Aire) gene: a comparative analysis

Mark Saltis; Michael F. Criscitiello; Yuko Ohta; Matthew D. Keefe; Nikolaus S. Trede; Ryo Goitsuka; Martin F. Flajnik

During T cell differentiation, medullary thymic epithelial cells (MTEC) expose developing T cells to tissue-specific antigens. MTEC expression of such self-antigens requires the transcription factor autoimmune regulator (Aire). In mammals, defects in aire result in multi-tissue, T cell-mediated autoimmunity. Because the T cell receptor repertoire is randomly generated and extremely diverse in all jawed vertebrates, it is likely that an aire-dependent T cell tolerance mechanism also exists in nonmammalian vertebrates. We have isolated aire genes from animals in all gnathostome classes except the cartilaginous fish by a combination of molecular techniques and scanning of expressed sequence tags and genomic databases. The deduced amino acid sequences of Aire were compared among mouse, human, opossum, chicken, Xenopus, zebrafish, and pufferfish. The first of two plant homeodomains (PHD) in human Aire and regions associated with nuclear and cytoplasmic localization are evolutionarily conserved, while other domains are either absent or divergent in one or more vertebrate classes. Furthermore, the second zinc-binding domain previously named Aire PHD2 appears to have greater sequence similarity with Ring finger domains than to PHD domains. Point mutations in defective human aire genes are generally found in the most evolutionarily conserved regions of the protein. These findings reveal a very rapid evolution of certain regions of aire during vertebrate evolution and support the existence of an aire-dependent mechanism of T cell tolerance dating back at least to the emergence of bony fish.


Journal of Immunology | 2006

Diverse Immunoglobulin Light Chain Organizations in Fish Retain Potential to Revise B Cell Receptor Specificities

Ellen Hsu; Michael F. Criscitiello

We have characterized the genomic organization of the three zebrafish L chain isotypes and found they all differed from those reported in other teleost fishes. Two of the zebrafish L chain isotypes are encoded by two loci, each carrying multiple V gene segments. To understand the derivation of these L chain genes and their organizations, we performed phylogenetic analyses and show that IgL organization can diverge considerably among closely related species. Except in zebrafish, the teleost fish IgL each contain only two to four recombinogenic components (one to three V, one J) and exist in multiple copies. BCR heterogeneity can be generated, but this arrangement apparently provides neither combinatorial diversification nor an opportunity for the secondary rearrangements that, in mammals, take place during receptor editing, a process crucial to the promotion of tolerance in developing lymphocytes. Examination of the zebrafish IgL recombination possibilities gave insight into how the suppression of self-reactivity by receptor editing might be managed, including in miniloci. We suggest that, despite the diverse IgL organizations in early and higher vertebrates, two elements essential to generating the Ab repertoire are retained: the numerous genes/loci for ligand-binding diversification and the potential for correcting unwanted specificities that arise.


Immunogenetics | 2012

Evolution of the B7 family: co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and of B7's historical relationship with the MHC

Martin F. Flajnik; Tereza Tlapakova; Michael F. Criscitiello; Vladimir Krylov; Yuko Ohta

The B7 family of genes is essential in the regulation of the adaptive immune system. Most B7 family members contain both variable (V)- and constant (C)-type domains of the immunoglobulin superfamily (IgSF). Through in silico screening of the Xenopus genome and subsequent phylogenetic analysis, we found novel genes belonging to the B7 family, one of which is the recently discovered B7H6. Humans and rats have a single B7H6 gene; however, many B7H6 genes were detected in a single large cluster in the Xenopus genome. The B7H6 expression patterns also varied in a species-specific manner. Human B7H6 binds to the activating natural killer receptor, NKp30. While the NKp30 gene is single-copy and maps to the MHC in most vertebrates, many Xenopus NKp30 genes were found in a cluster on a separate chromosome that does not harbor the MHC. Indeed, in all species so far analyzed from sharks to mammals, the number of NKp30 and B7H6 genes correlates well, suggestive of receptor-ligand co-evolution. Furthermore, we identified a Xenopus-specific B7 homolog (B7HXen) and revealed its close linkage to B2M, which we have demonstrated previously to have been originally encoded in the MHC. Thus, our study provides further proof that the B7 precursor was included in the proto MHC. Additionally, the comparative analysis revealed a new B7 family member, B7H7, which was previously designated in the literature as an unknown gene, HHLA2.The B7 family of genes is essential in the regulation of the adaptive immune system. Most B7 family members contain both variable (V)- and constant (C)-type domains of the immunoglobulin superfamily (IgSF). Through in silico screening of the Xenopus genome and subsequent phylogenetic analysis, we found novel genes belonging to the B7 family, one of which is the recently discovered B7H6. Humans and rats have a single B7H6 gene; however, many B7H6 genes were detected in a single large cluster in the Xenopus genome. The B7H6 expression patterns also varied in a species-specific manner. Human B7H6 binds to the activating natural killer receptor, NKp30. While the NKp30 gene is single-copy and maps to the MHC in most vertebrates, many Xenopus NKp30 genes were found in a cluster on a separate chromosome that does not harbor the MHC. Indeed, in all species so far analyzed from sharks to mammals, the number of NKp30 and B7H6 genes correlates well, suggestive of receptor-ligand co-evolution. Furthermore, we identified a Xenopus-specific B7 homolog (B7HXen) and revealed its close linkage to B2M, which we have demonstrated previously to have been originally encoded in the MHC. Thus, our study provides further proof that the B7 precursor was included in the proto MHC. Additionally, the comparative analysis revealed a new B7 family member, B7H7, which was previously designated in the literature as an unknown gene, HHLA2.


Molecular Immunology | 2011

Quantum dots trigger immunomodulation of the NFκB pathway in human skin cells.

Amelia Romoser; Patricia L. Chen; J. Michael Berg; Christopher M. Seabury; Ivan Ivanov; Michael F. Criscitiello; Christie M. Sayes

The immunological effects of quantum dots are dependent on a variety of factors including, but not limited to, exposure time and dosing concentrations. In this study, we investigated the influence of 15 nm CdSe/ZnS-COOH quantum dot nanocrystals (QDs) on cell density, viability, and morphology in human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF). Furthermore, inflammatory and non-inflammatory immune responses were measured using protein and real time PCR array analysis from HDF cells exposed to predetermined sub-lethal concentrations of QDs. CdSe/ZnS-COOH QDs caused concentration-dependent (1-120 nM exposure concentrations) and time-dependent (8 h or 48 h) cell death, as evidenced by metabolic activity and morphological changes. QD exposure induced upregulation of apoptotic, inflammatory and immunoregulatory proteins such as TNF-α, IL-1B and IL-10. HMOX1, an indicator of stress due to reactive oxygen intermediates (ROIs) and/or metals, was upregulated at the later time point as well. QDs also caused modulation of genes known to be associated with inflammatory (IL1-β, CCL2, IRAK-2), immune (IL-1, IL-6, PGLYRP1, SERPINA1, IL-10), stress due to ROIs and/or heavy metals (HMOX1), and apoptotic (CASP1, ADORA2A) responses. Cellular effects from QD exposure were found to primarily follow the NFκB pathway. In addition, QDs induced a differential cytotoxicity in keratinocytes and fibroblasts at different exposure concentrations and time points, even at physiologically relevant dosing concentrations, thus emphasizing the need to investigate potential mechanisms of action among different cell types within the same target organ.


Cell Calcium | 2013

Evolution of the S100 family of calcium sensor proteins

Danna B. Zimmer; Jeannine O. Eubanks; Dhivya Ramakrishnan; Michael F. Criscitiello

The S100s are a large group of Ca(2+) sensors found exclusively in vertebrates. Transcriptomic and genomic data from the major radiations of mammals were used to derive the evolution of the mammalian S100s genes. In human and mouse, S100s and S100 fused-type proteins are in a separate clade from other Ca(2+) sensor proteins, indicating that an ancient bifurcation between these two gene lineages has occurred. Furthermore, the five genomic loci containing S100 genes have remained largely intact during the past 165 million years since the shared ancestor of egg-laying and placental mammals. Nonetheless, interesting births and deaths of S100 genes have occurred during mammalian evolution. The S100A7 loci exhibited the most plasticity and phylogenetic analyses clarified relationships between the S100A7 proteins encoded in the various mammalian genomes. Phylogenetic analyses also identified four conserved subgroups of S100s that predate the rise of warm-blooded vertebrates: A2/A3/A4/A5/A6, A1/A10/A11/B/P/Z, A13/A14/A16, and A7s/A8/A9/A12/G. The similarity between genomic location and phylogenetic clades suggest that these subfamilies arose by a series of tandem gene duplication events. Examination of annotated S100s in lower vertebrates suggests that the ancestral S100 was a member of the A1/A10/A11/B/P/Z subgroup and arose near the emergence of vertebrates approximately 500 million years ago.

Collaboration


Dive into the Michael F. Criscitiello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuko Ohta

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Vaughn V. Smider

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge