Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael F. Good is active.

Publication


Featured researches published by Michael F. Good.


The Lancet | 2002

Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum

David J. Pombo; Gregor Lawrence; Chakrit Hirunpetcharat; Christine M. Rzepczyk; Michelle Bryden; Nicole Cloonan; Karen Anderson; Yuvadee Mahakunkijcharoen; Laura B. Martin; Danny W. Wilson; Salenna R. Elliott; Suzanne L. Elliott; Damon P. Eisen; J. Brice Weinberg; Allan Saul; Michael F. Good

BACKGROUND The ability of T cells, acting independently of antibodies, to control malaria parasite growth in people has not been defined. If such was shown to be effective, an additional vaccine strategy could be pursued. Our aim was to ascertain whether or not development of cell-mediated immunity to Plasmodium falciparum blood-stage infection could be induced in human beings by exposure to malaria parasites in very low density. METHODS We enrolled five volunteers from the staff at our research institute who had never had malaria. We used a cryopreserved inoculum of red cells infected with P falciparum strain 3D7 to give them repeated subclinical infections of malaria that we then cured early with drugs, to induce cell-mediated immune responses. We tested for development of immunity by measurement of parasite concentrations in the blood of volunteers by PCR of the multicopy gene STEVOR and by following up the volunteers clinically, and by measuring antibody and cellular immune responses to the parasite. FINDINGS After challenge and a extended period without drug cure, volunteers were protected against malaria as indicated by absence of parasites or parasite DNA in the blood, and absence of clinical symptoms. Immunity was characterised by absence of detectable antibodies that bind the parasite or infected red cells, but by the presence of a proliferative T-cell response, involving CD4+ and CD8+ T cells, a cytokine response, consisting of interferon gamma but not interleukin 4 or interleukin 10, induction of high concentrations of nitric oxide synthase activity in peripheral blood mononuclear cells, and a drop in the number of peripheral natural killer T cells. INTERPRETATION People can be protected against the erythrocytic stage of malaria by a strong cell-mediated immune response, in the absence of detectable parasite-specific antibodies, suggesting an additional strategy for development of a malaria vaccine


Angewandte Chemie | 2010

Polyacrylate Dendrimer Nanoparticles: A Self‐Adjuvanting Vaccine Delivery System

Mariusz Skwarczynski; Mehfuz Zaman; Carl N. Urbani; I-Chun Lin; Zhongfan Jia; Michael R. Batzloff; Michael F. Good; Michael J. Monteiro; Istvan Toth

(Figure Presented) Special delivery: An effective group A streptococci vaccine is formed from a delivery device consisting of well-defined dendritic structures with nanoscale dimensions (see picture). The structures are designed to display multiple copies of the minimal B-cell epitopes, which were in the optimal conformation on the surface of the nanoparticles. The nanoparticles can be administered without the aid of an adjuvant.


Current Opinion in Immunology | 1999

IMMUNE EFFECTOR MECHANISMS IN MALARIA

Michael F. Good; Denise L. Doolan

Malaria, a disease responsible for immense human suffering, is caused by infection with Plasmodium spp. parasites, which have a very complex life cycle - antigenically unique stages infect different tissues of the body. This review details recent developments in our understanding of immunity both to pre-erythrocytic stage antigens and to erythrocytic stage antigens. The former is largely mediated via CD8(+) T cells and involves IFN-gamma, nitric oxide, IL-12 and natural killer cells; the latter varies (in different hosts and with different parasites) but is largely mediated by antibody, helper T cells, nitric oxide and gammadelta T cells. The recent progress towards clinical trials of vaccine candidates against both the pre-erythrocytic stage and erythrocytic stage is also summarized, in particular the use of heterologous prime/boost strategies for the former and the use of MSP1 as a candidate vaccine for the latter.


The Lancet | 2004

Malaria vaccine developments

Vasee S. Moorthy; Michael F. Good; Adrian V. S. Hill

Large gains in the reduction of malaria mortality in the early 20th century were lost in subsequent decades. Malaria now kills 2-3 million people yearly. Implementation of malaria control technologies such as insecticide-treated bednets and chemotherapy could reduce mortality substantially, but an effective malaria vaccine is also needed. Advances in vaccine technology and immunology are being used to develop malaria subunit vaccines. Novel approaches that might yield effective vaccines for other diseases are being evaluated first in malaria. We describe progress in malaria vaccine development in the past 5 years: reasons for cautious optimism, the type of vaccine that might realistically be expected, and how the process could be hastened. Although exact predictions are not possible, if sufficient funding were mobilised, a deployable, effective malaria vaccine is a realistic medium-term to long-term goal.


Nature Medicine | 2000

New multi-determinant strategy for a group A streptococcal vaccine designed for the Australian Aboriginal population

Evelyn R. Brandt; K. S. Sriprakash; Rhonda I. Hobb; Wendy A. Hayman; Weiguang Zeng; Michael R. Batzloff; David C. Jackson; Michael F. Good

Infection with group A streptococci can result in acute and post-infectious pathology, including rheumatic fever and rheumatic heart disease. These diseases are associated with poverty and are increasing in incidence, particularly in developing countries and amongst indigenous populations, such as Australias Aboriginal population, who suffer the highest incidence worldwide. Immunity to group A streptococci is mediated by antibodies against the M protein, a coiled-coil alpha helical surface protein of the bacterium. Vaccine development faces two substantial obstacles. Although opsonic antibodies directed against the N terminus of the protein are mostly responsible for serotypic immunity, more than 100 serotypes exist. Furthermore, whereas the pathogenesis of rheumatic fever is not well understood, increasing evidence indicates an autoimmune process. To develop a suitable vaccine candidate, we first identified a minimum, helical, non-host-cross-reactive peptide from the conserved C-terminal half of the protein and displayed this within a non-M-protein peptide sequence designed to maintain helical folding and antigenicity, J14 (refs. 8,9). As this region of the M protein is identical in only 70% of group A streptococci isolates, the optimal candidate might consist of the conserved determinant with common N-terminal sequences found in communities with endemic group A streptococci. We linked seven serotypic peptides with J14 using a new chemistry technique that enables the immunogen to display all the individual peptides pendant from an alkane backbone. This construct demonstrated excellent immunogenicity and protection in mice.


Journal of Immunology | 2010

Immune-mediated mechanisms of parasite tissue sequestration during experimental cerebral malaria

Fiona H. Amante; Ashraful Haque; Amanda C. Stanley; Fabian de Labastida Rivera; Louise M. Randall; Yana A. Wilson; Gladys Yeo; Christian Pieper; Brendan S. Crabb; Tania F. de Koning-Ward; Rachel J. Lundie; Michael F. Good; Alberto Pinzon-Charry; Mark S. Pearson; Mary Duke; Donald P McManus; Alex Loukas; Geoff R. Hill; Christian R. Engwerda

Cerebral malaria is a severe complication of malaria. Sequestration of parasitized RBCs in brain microvasculature is associated with disease pathogenesis, but our understanding of this process is incomplete. In this study, we examined parasite tissue sequestration in an experimental model of cerebral malaria (ECM). We show that a rapid increase in parasite biomass is strongly associated with the induction of ECM, mediated by IFN-γ and lymphotoxin α, whereas TNF and IL-10 limit this process. Crucially, we discovered that host CD4+ and CD8+ T cells promote parasite accumulation in vital organs, including the brain. Modulation of CD4+ T cell responses by helminth coinfection amplified CD4+ T cell-mediated parasite sequestration, whereas vaccination could generate CD4+ T cells that reduced parasite biomass and prevented ECM. These findings provide novel insights into immune-mediated mechanisms of ECM pathogenesis and highlight the potential of T cells to both prevent and promote infectious diseases.


Journal of Experimental Medicine | 2002

The mechanism and significance of deletion of parasite-specific CD4(+) T cells in malaria infection.

Huji Xu; Jiraprapa Wipasa; Huaru Yan; Ming Zeng; Morris O. Makobongo; Fred D. Finkelman; Anne Kelso; Michael F. Good

It is thought that both helper and effector functions of CD4+ T cells contribute to protective immunity to blood stage malaria infection. However, malaria infection does not induce long-term immunity and its mechanisms are not defined. In this study, we show that protective parasite-specific CD4+ T cells were depleted after infection with both lethal and nonlethal species of rodent Plasmodium. It is further shown that the depletion is confined to parasite-specific T cells because (a) ovalbumin (OVA)-specific CD4+ T cells are not depleted after either malaria infection or direct OVA antigen challenge, and (b) the depletion of parasite-specific T cells during infection does not kill bystander OVA-specific T cells. A significant consequence of the depletion of malaria parasite–specific CD4+ T cells is impaired immunity, demonstrated in mice that were less able to control parasitemia after depletion of transferred parasite-specific T cells. Using tumor necrosis factor (TNF)-RI knockout– and Fas-deficient mice, we demonstrate that the depletion of parasite-specific CD4+ T cells is not via TNF or Fas pathways. However, in vivo administration of anti–interferon (IFN)-γ antibody blocks depletion, suggesting that IFN-γ is involved in the process. Taken together, these data suggest that long-term immunity to malaria infection may be affected by an IFN-γ–mediated depletion of parasite-specific CD4+ T cells during infection. This study provides further insight into the nature of immunity to malaria and may have a significant impact on approaches taken to develop a malaria vaccine.


Nature Reviews Immunology | 2001

Towards a blood-stage vaccine for malaria: are we following all the leads?

Michael F. Good

Although the malaria parasite was discovered more than 120 years ago, it is only during the past 20 years, following the cloning of malaria genes, that we have been able to think rationally about vaccine design and development. Effective vaccines for malaria could interrupt the life cycle of the parasite at different stages in the human host or in the mosquito. The purpose of this review is to outline the challenges we face in developing a vaccine that will limit growth of the parasite during the stage within red blood cells — the stage responsible for all the symptoms and pathology of malaria. More than 15 vaccine trials have either been completed or are in progress, and many more are planned. Success in current trials could lead to a vaccine capable of saving more than 2 million lives per year.


Cancer Immunology, Immunotherapy | 1997

A case report: Immune responses and clinical course of the first human use of granulocyte/macrophage-colony-stimulating-factor-transduced autologous melanoma cells for immunotherapy

Kay A. O. Ellem; Michael G. E. O’Rourke; Gregory R. Johnson; Gordon Parry; Ihor S. Misko; Christopher W. Schmidt; Peter G. Parsons; Scott R. Burrows; Simone M. Cross; Andrew H. Fell; Chung-Leung Li; Philip J. Dubois; Denis J. Moss; Michael F. Good; Anne Kelso; Lawrence K. Cohen; Glenn Dranoff; Richard C. Mulligan

Abstract The first use of granulocyte/macrophage-colony-stimulating-factor-transduced, lethally irradiated, autologous melanoma cells as a therapeutic vaccine in a patient with rapidly progressive, widely disseminated malignant melanoma resulted in the generation of a novel antitumour immune response associated with partial, albeit temporary, clinical benefit. An initially negative reaction to non-transduced, autologous melanoma cells was converted to a delayed-type hypersensitivity (DTH) reaction of increasing magnitude following successive vaccinations. While intradermal vaccine sites showed prominent dendritic cell accrual, DTH sites revealed a striking influx of eosinophils in addition to activated/memory T lymphocytes and macrophages, recalling the histology of challenge tumour cell rejection in immune mice. Cytotoxic T lymphocytes (CTL) reactive with autologous melanoma cells were detectable at high frequency after vaccination, not only in limiting-dilution analysis, but also in bulk culture without added cytokines. Clonal analysis of CTL showed a conversion from a purely CD8+ response to a high proportion of CD4+ clones following vaccination. A prominent acute-phase response manifested by a five- to tenfold increase in C-reactive protein was observed, as was a systemic eosinophilia. Vaccination resulted in the regression of axillary lymphatic metastases, stabilisation of pulmonary metastases, and a dramatic, reversible increase in cerebral oedema associated with multiple central nervous system metastases; however, lesions in the adrenal glands, pancreas and spleen proved refractory. The antitumour effects and immune response were not detectable 2 months following the last vaccination. Irradiation of the extensive cerebral metastases resulted in rapid deterioration and death of the patient.


Immunity | 2010

Malaria vaccine design: immunological considerations.

Michael F. Good; Denise L. Doolan

The concept of a malaria vaccine has sparked great interest for decades; however, the challenge is proving to be a difficult one. Immune dysregulation by Plasmodium and the ability of the parasite to mutate critical epitopes in surface antigens have proved to be strong defense weapons. This has led to reconsideration of polyvalent and whole parasite strategies and ways to enhance cellular immunity to malaria that may be more likely to target conserved antigens and an expanded repertoire of antigens. These and other concepts will be discussed in this review.

Collaboration


Dive into the Michael F. Good's collaboration.

Top Co-Authors

Avatar

Istvan Toth

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colleen Olive

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Peter M. Moyle

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian R. Engwerda

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay A. Berzofsky

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yoshio Fujita

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge