Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael F. Wendland is active.

Publication


Featured researches published by Michael F. Wendland.


Cancer Research | 2004

Distribution of Liposomes into Brain and Rat Brain Tumor Models by Convection-Enhanced Delivery Monitored with Magnetic Resonance Imaging

Ryuta Saito; John Bringas; Tracy R. McKnight; Michael F. Wendland; Christoph Mamot; Daryl C. Drummond; Dmitri B. Kirpotin; John W. Park; Mitchel S. Berger; Krys S. Bankiewicz

Although liposomes have been used as a vehicle for delivery of therapeutic agents in oncology, their efficacy in targeting brain tumors has been limited due to poor penetration through the blood-brain barrier. Because convection-enhanced delivery (CED) of liposomes may improve the therapeutic index for targeting brain tumors, we conducted a three-stage study: stage 1 established the feasibility of using in vivo magnetic resonance imaging (MRI) to confirm adequate liposomal distribution within targeted regions in normal rat brain. Liposomes colabeled with gadolinium (Gd) and a fluorescent indicator, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine-5,5′-disulfonic acid [DiI-DS; formally DiIC18(3)-DS], were administered by CED into striatal regions. The minimum concentration of Gd needed for monitoring, correlation of infused volume with distribution volume, clearance of infused liposome containing Gd and DiI-DS (Lip/Gd/DiI-DS), and potential local toxicity were evaluated. After determination of adequate conditions for MRI detection in normal brain, stage 2 evaluated the feasibility of in vivo MRI monitoring of liposomal distribution in C6 and 9L-2 rat glioma models. In both models, the distribution of Lip/Gd/DiI-DS covering the tumor mass was well defined and monitored with MRI. Stage 3 was designed to develop a clinically relevant treatment strategy in the 9L-2 model by infusing liposome containing Gd (Lip/Gd), prepared in the same size as Lip/Gd/DiI-DS, with Doxil, a liposomal drug of similar size used to treat several cancers. MRI detection of Lip/Gd coadministered with Doxil provided optimum CED parameters for complete coverage of 9L-2 tumors. By permitting in vivo monitoring of therapeutic distribution in brain tumors, this technique optimizes local drug delivery and may provide a basis for clinical applications in the treatment of malignant glioma.


Circulation | 2001

Magnetic Resonance Characterization of the Peri-Infarction Zone of Reperfused Myocardial Infarction With Necrosis-Specific and Extracellular Nonspecific Contrast Media

Maythem Saeed; Gunnar Lund; Michael F. Wendland; Jens Bremerich; Hanns-Joachim Weinmann; Charles B. Higgins

Background —Because ischemically injured myocardium is frequently composed of viable and nonviable portions, a method to discriminate the two is useful for clinical management. Methods and Results —Ischemically injured myocardium was characterized with extracellular nonspecific (Gd-DTPA) and necrosis-specific (mesoporphyrin) MR contrast media in rats. Relaxation rates (R1) were measured on day 1 and day 2 by inversion-recovery echoplanar imaging. Spin-echo imaging was used to define contrast-enhanced regions and regional wall thickening. Gadolinium concentration, area at risk, and infarct size were measured at postmortem examination. &Dgr;R1 ratio (&Dgr;R1myocardium/&Dgr;R1blood) after administration of Gd-DTPA was greater in ischemically injured myocardium (1.20±0.15) than in normal myocardium (0.47±0.05, P <0.05), which was attributed to differences in gadolinium concentration and water content. The Gd-DTPA–enhanced region on day 2 was larger (32.8±0.9%) than true infarction as demonstrated by triphenyltetrazolium chloride (TTC) (24.6±1.4%, P <0.001, r =0.21). Bland-Altman analysis revealed that the Gd-DTPA–enhanced region overestimated true infarct size by 7.8±5.9%. On the other hand, the mesoporphyrin-enhanced region (26.9±1.8%, P =NS, r =0.87) and true infarct size were identical. The difference in the areas demarcated by the 2 agents is the peri-infarction. Systolic and diastolic MR images revealed no wall thickening in the mesoporphyrin-enhanced region (0.3±3.3%) but reduced thickening in the Gd-DTPA–enhanced rim (8.5±5.5%, P <0.05). Conclusions —The Gd-DTPA–enhanced region encompasses both viable and nonviable portions of the ischemically injured myocardium. The Gd-DTPA–enhanced area overestimated infarct size, but the mesoporphyrin-enhanced area matched true infarct size. The salvageable peri-infarction zone can be characterized with double-contrast–enhanced and functional MR imaging; the mismatched area of enhancement between the 2 agents shows residual wall thickening.


The Journal of Neuroscience | 2011

Microglial Cells Contribute to Endogenous Brain Defenses after Acute Neonatal Focal Stroke

Joel Faustino; Xia Wang; Cali E. Johnson; Alexander L. Klibanov; Nikita Derugin; Michael F. Wendland; Zinaida S. Vexler

Macrophages are viewed as amplifiers of ischemic brain injury, but the origin of injury-producing macrophages is poorly defined. The role of resident brain macrophages—microglial cells—in stroke remains controversial. To determine whether microglial cells exert injurious effects after neonatal focal stroke, we selectively depleted these cells with intracerebral injection of liposome-encapsulated clodronate before transient middle cerebral artery occlusion in postnatal day 7 rats. Phagocytosis of apoptotic neurons by activated microglia was poor in animals with unmanipulated microglia, and depletion of these cells did not increase the number of apoptotic neurons. Lack of microglia increased the brain levels of several cytokines and chemokines already elevated by ischemia–reperfusion, and also increased the severity and volume of injury, suggesting that microglial cells contribute to endogenous protection during the subacute injury phase. Then, to determine whether accumulation of reactive oxygen species in microglia adversely affects phagocytosis of dying neurons and contributes to injury, we delivered reduced glutathione (GSH) into microglia, again using liposomes. Remarkably, pharmacologically increased intracellular GSH concentrations in microglia induced superoxide accumulation in lipid rafts in these cells, further increased the brain levels of macrophage chemoattractants, and exacerbated injury. Together, these data show that microglia are part of the endogenous defense mechanisms and that, while antioxidants can protect the injured neonatal brain, high levels of reducing equivalents in activated microglia, GSH, trigger superoxide production, favor the reorganization of lipids, amplify local inflammation and exacerbate injury.


Pediatric Research | 2005

Erythropoietin Improves Functional and Histological Outcome in Neonatal Stroke

Yun Sil Chang; Dezhi Mu; Michael F. Wendland; R. Ann Sheldon; Zinaida S. Vexler; Patrick S. McQuillen; Donna M. Ferriero

Neonatal stroke is a condition that leads to disability in later life, and as yet there is no effective treatment. Recently, erythropoietin (EPO) has been shown to be cytoprotective following brain injury and may promote neurogenesis. However, the effect of EPO on functional outcome and on morphologic changes in neonatal subventricular zone (SVZ) following experimental neonatal stroke has not been described. We used a transient focal model of neonatal stroke in P10 rat. Injury was documented by diffusion weighted MRI during occlusion. Immediately upon reperfusion, either EPO (5U/gm) or vehicle was administered intraperitoneally and animals were allowed to grow for 2 wk. Sensorimotor function was assessed using the cylinder rearing test and then brains were processed for volumetric analysis of the SVZ. Stroke induced SVZ expansion proportional to hemispheric volume loss. EPO treatment markedly preserved hemispheric volume and decreased the expansion of SVZ unilaterally. Furthermore, EPO treatment significantly improved the asymmetry of forelimb use following neonatal stroke. This functional improvement directly correlated with the amount of preserved hemispheric volume. These results suggest EPO may be a candidate in the treatment of neonatal stroke.


Journal of Magnetic Resonance Imaging | 2002

Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme

Axel Gossmann; Thomas H. Helbich; Nagato Kuriyama; Susanne Ostrowitzki; Timothy P.L. Roberts; David M. Shames; N. van Bruggen; Michael F. Wendland; Mark A. Israel; Robert C. Brasch

To evaluate the effects of a neutralizing anti‐vascular endothelial growth factor (anti‐VEGF) antibody on tumor microvascular permeability, a proposed indicator of angiogenesis, and tumor growth in a rodent malignant glioma model.


Developmental Neuroscience | 2007

Erythropoietin Enhances Long-Term Neuroprotection and Neurogenesis in Neonatal Stroke

Fernando F. Gonzalez; Patrick S. McQuillen; Dezhi Mu; Yunsil Chang; Michael F. Wendland; Zinaida S. Vexler; Donna M. Ferriero

Neonatal stroke leads to mortality and severe morbidity, but there is no effective treatment currently available. Erythropoietin (EPO) has been shown to promote cytoprotection and neurogenesis and decrease subventricular zone morphologic changes following brain injury. The long-term cellular response to EPO has not been defined, and local changes in cell fate decision may play a role in functional improvement. We performed middle cerebral artery occlusion in P10 rats. EPO treatment (5 U/g IP) significantly preserved hemispheric brain volume 6 weeks after injury. Furthermore, EPO increased the percentage of newly generated neurons while decreasing newly generated astrocytes following brain injury, without demonstrating long-term differences in the subventricular zone. These results suggest that EPO may neuroprotect and direct cell fate toward neurogenesis and away from gliogenesis in neonatal stroke.


European Radiology | 2006

T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR scanning.

Gerhard H. Simon; Jan S. Bauer; Olaf Saborovski; Yanjun Fu; Claire Corot; Michael F. Wendland; Heike E. Daldrup-Link

In this study we evaluated the effects of intracellular compartmentalization of the ultrasmall superparamagnetic iron oxide (USPIO) ferumoxtran-10 on its proton T1 and T2 relaxivities at 1.5 and 3T. Monocytes were labeled with ferumoxtran-10 by simple incubation. Decreasing quantities of ferumoxtran-10-labeled cells (2.5×107-0.3×107 cells/ml) and decreasing concentrations of free ferumoxtran-10 (without cells) in Ficoll solution were evaluated with 1.5 and 3T clinical magnetic resonance (MR) scanners. Pulse sequences comprised axial spin echo (SE) sequences with multiple TRs and fixed TE and SE sequences with fixed TR and increasing TEs. Signal intensity measurements were used to calculate T1 and T2 relaxation times of all samples, assuming a monoexponential signal decay. The iron content in all samples was determined by inductively coupled plasma atomic emission spectrometry and used for calculating relaxivities. Measurements at 1.5T and 3T showed higher T1 and T2 relaxivity values of free extracellular ferumoxtran-10 as opposed to intracellularly compartmentalized ferumoxtran-10, under the evaluated conditions of homogeneously dispersed contrast agents/cells in Ficoll solution and a cell density of up to 2.5×107 cells/ml. At 3T, differences in T1-relaxivities between intra- and extracellular USPIO were smaller, while differences in USPIO T2-relaxivities were similar compared with 1.5T. In conclusion, cellular compartmentalization of ferumoxtran-10 changes proton relaxivity.


Experimental Neurology | 2005

Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain

Ryuta Saito; Michal T. Krauze; John Bringas; Charles O. Noble; Tracy R. McKnight; Pamela Jackson; Michael F. Wendland; Christoph Mamot; Daryl C. Drummond; Dimitri B. Kirpotin; Keelung Hong; Mitchel S. Berger; John W. Park; Krystof S. Bankiewicz

Drug delivery to brain tumors has long posed a major challenge. Convection-enhanced delivery (CED) has been developed as a drug delivery strategy to overcome this difficulty. Ideally, direct visualization of the tissue distribution of drugs infused by CED would assure successful delivery of therapeutic agents to the brain tumor while minimizing exposure of the normal brain. We previously developed a magnetic resonance imaging (MRI)-based method to visualize the distribution of liposomal agents after CED in rodent brains. In the present study, CED of liposomes was further examined in the non-human primate brain (n = 6). Liposomes containing Gadoteridol, DiI-DS, and rhodamine were infused in corona radiata, putamen nucleus, and brain stem. Volume of distribution was analyzed for all delivery locations by histology and MR imaging. Real-time MRI monitoring of liposomes containing gadolinium allowed direct visualization of a robust distribution. MRI of liposomal gadolinium was highly accurate at determining tissue distribution, as confirmed by comparison with histological results from concomitant administration of fluorescent liposomes. Linear correlation for liposomal infusions between infusion volume and distribution volume was established in all targeted locations. We conclude that an integrated strategy combining liposome/nanoparticle technology, CED, and MRI may provide new opportunities for the treatment of brain tumors. Our ability to directly monitor and to control local delivery of liposomal drugs will most likely result in greater clinical efficacy when using CED in management of patients.


Clinical Cancer Research | 2011

MRI of Tumor-Associated Macrophages with Clinically Applicable Iron Oxide Nanoparticles

Heike E. Daldrup-Link; Daniel Golovko; Brian Ruffell; David G. DeNardo; Rosalinda Castaneda; Celina Ansari; Jianghong Rao; Grigory A. Tikhomirov; Michael F. Wendland; Claire Corot; Lisa M. Coussens

Purpose: The presence of tumor-associated macrophages (TAM) in breast cancer correlates strongly with poor outcome. The purpose of this study was to develop a clinically applicable, noninvasive diagnostic assay for selective targeting and visualization of TAMs in breast cancer, based on magnetic resonanceI and clinically applicable iron oxide nanoparticles. Experimental Design: F4/80-negative mammary carcinoma cells and F4/80-positive TAMs were incubated with iron oxide nanoparticles and were compared with respect to magnetic resonance signal changes and iron uptake. MMTV-PyMT transgenic mice harboring mammary carcinomas underwent nanoparticle-enhanced magnetic resonance imaging (MRI) up to 1 hour and 24 hours after injection. The tumor enhancement on MRIs was correlated with the presence and location of TAMs and nanoparticles by confocal microscopy. Results:In vitro studies revealed that iron oxide nanoparticles are preferentially phagocytosed by TAMs but not by malignant tumor cells. In vivo, all tumors showed an initial contrast agent perfusion on immediate postcontrast MRIs with gradual transendothelial leakage into the tumor interstitium. Twenty-four hours after injection, all tumors showed a persistent signal decline on MRIs. TAM depletion via αCSF1 monoclonal antibodies led to significant inhibition of tumor nanoparticle enhancement. Detection of iron using 3,3′-diaminobenzidine-enhanced Prussian Blue staining, combined with immunodetection of CD68, localized iron oxide nanoparticles to TAMs, showing that the signal effects on delayed MRIs were largely due to TAM-mediated uptake of contrast agent. Conclusion: These data indicate that tumor enhancement with clinically applicable iron oxide nanoparticles may serve as a new biomarker for long-term prognosis, related treatment decisions, and the evaluation of new immune-targeted therapies. Clin Cancer Res; 17(17); 5695–704. ©2011 AACR.


Journal of Cerebral Blood Flow and Metabolism | 2005

Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia–reperfusion

Christine K. Fox; Andra Dingman; Nikita Derugin; Michael F. Wendland; Catherine Manabat; Shaoquan Ji; Donna M. Ferriero; Zinaida S. Vexler

The incidence of neonatal stroke is high and currently there are no strategies to protect the neonatal brain from stroke or reduce the sequelae. Agents capable of modifying inflammatory processes hold promise. We set out to determine whether delayed administration of one such agent, minocycline, protects the immature brain in a model of transient middle cerebral artery (MCA) occlusion in 7-day-old rat pups. Injury volume in minocycline (45 mg/kg/dose, beginning at 2 h after MCA occlusion) and vehicle-treated pups was determined 24 h and 7 days after onset of reperfusion. Accumulation of activated microglia/macrophages, phosphorylation of mitogen-activated protein kinase (MAPK) p38 in the brain, and concentrations of inflammatory mediators in plasma and brain were determined at 24 h. Minocycline significantly reduced the volume of injury at 24 h but not 7 days after transient MCA occlusion. The beneficial effect of minocycline acutely after reperfusion was not associated with changed ED1 phenotype, nor was the pattern of MAPK p38 phosphorylation altered. Minocycline reduced accumulation of IL-1β and CINC-1 in the systemic circulation but failed to affect the increased levels of IL-1β, IL-18, MCP-1 or CINC-1 in the injured brain tissue. Therefore, minocycline provides early but transient protection, which is largely independent of microglial activation or activation of the MAPK p38 pathway.

Collaboration


Dive into the Michael F. Wendland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maythem Saeed

University of California

View shared research outputs
Top Co-Authors

Avatar

Nikita Derugin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanjun Fu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge