Michael Fleischhauer
Kaiserslautern University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Fleischhauer.
Nature Materials | 2009
Na Liu; Lutz Langguth; Thomas Weiss; Jürgen Kästel; Michael Fleischhauer; Tilman Pfau; Harald Giessen
In atomic physics, the coherent coupling of a broad and a narrow resonance leads to quantum interference and provides the general recipe for electromagnetically induced transparency (EIT). A sharp resonance of nearly perfect transmission can arise within a broad absorption profile. These features show remarkable potential for slow light, novel sensors and low-loss metamaterials. In nanophotonics, plasmonic structures enable large field strengths within small mode volumes. Therefore, combining EIT with nanoplasmonics would pave the way towards ultracompact sensors with extremely high sensitivity. Here, we experimentally demonstrate a nanoplasmonic analogue of EIT using a stacked optical metamaterial. A dipole antenna with a large radiatively broadened linewidth is coupled to an underlying quadrupole antenna, of which the narrow linewidth is solely limited by the fundamental non-radiative Drude damping. In accordance with EIT theory, we achieve a very narrow transparency window with high modulation depth owing to nearly complete suppression of radiative losses.
Nature | 2005
M. D. Eisaman; Axel Andre; F. Massou; Michael Fleischhauer; A. S. Zibrov; M. D. Lukin
Techniques to facilitate controlled interactions between single photons and atoms are now being actively explored. These techniques are important for the practical realization of quantum networks, in which multiple memory nodes that utilize atoms for generation, storage and processing of quantum states are connected by single-photon transmission in optical fibres. One promising avenue for the realization of quantum networks involves the manipulation of quantum pulses of light in optically dense atomic ensembles using electromagnetically induced transparency (EIT, refs 8, 9). EIT is a coherent control technique that is widely used for controlling the propagation of classical, multi-photon light pulses in applications such as efficient nonlinear optics. Here we demonstrate the use of EIT for the controllable generation, transmission and storage of single photons with tunable frequency, timing and bandwidth. We study the interaction of single photons produced in a ‘source’ ensemble of 87Rb atoms at room temperature with another ‘target’ ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval.
Physical Review A | 2002
Michael Fleischhauer; Mikhail D. Lukin
An ideal and reversible transfer technique for the quantum state between light and metastable collective states of matter is presented and analyzed in detail. The method is based on the control of photon propagation in coherently driven three-level atomic media, in which the group velocity is adiabatically reduced to zero. Form-stable coupled excitations of light and matter ~‘‘dark-state polaritons’’ ! associated with the propagation of quantum fields in electromagnetically induced transparency are identified, their basic properties discussed and their application for quantum memories for light analyzed.
Physical Review Letters | 2005
Julius Ruseckas; Gediminas Juzeliūnas; Patrik Ohberg; Michael Fleischhauer
We show that the adiabatic motion of ultracold, multilevel atoms in spatially varying laser fields can give rise to effective non-Abelian gauge fields if degenerate adiabatic eigenstates of the atom-laser interaction exist. A pair of such degenerate dark states emerges, e.g., if laser fields couple three internal states of an atom to a fourth common one under pairwise two-photon-resonance conditions. For this so-called tripod scheme we derive general conditions for truly non-Abelian gauge potentials and discuss special examples. In particular we show that using orthogonal laser beams with orbital angular momentum an effective magnetic field can be generated that has a monopole component.
Physical Review Letters | 2007
Alexey V. Gorshkov; Axel Andre; Michael Fleischhauer; Anders S. Sørensen; Mikhail D. Lukin
We present a universal physical picture for describing storage and retrieval of photon wave packets in a Lambda-type atomic medium. This physical picture encompasses a variety of different approaches to pulse storage ranging from adiabatic reduction of the photon group velocity and pulse-propagation control via off-resonant Raman fields to photon-echo-based techniques. Furthermore, we derive an optimal control strategy for storage and retrieval of a photon wave packet of any given shape. All these approaches, when optimized, yield identical maximum efficiencies, which only depend on the optical depth of the medium.
Optics Letters | 1998
Mikhail D. Lukin; Michael Fleischhauer; Marlan O. Scully; V. L. Velichansky
The effect of intracavity electromagnetically induced transparency (EIT) on the properties of optical resonators and active laser devices is discussed theoretically. Pronounced frequency pulling and cavity-linewidth narrowing are predicted. The EIT effect can be used to reduce classical and quantum-phase noise of the beat note of an optical oscillator substantially. Fundamental limits of this stabilization mechanism as well as its potential application to high-resolution spectroscopy are discussed.
Physical Review Letters | 2011
Alexey V. Gorshkov; Johannes Otterbach; Michael Fleischhauer; Thomas Pohl; Mikhail D. Lukin
We develop the theory of light propagation under the conditions of electromagnetically induced transparency in systems involving strongly interacting Rydberg states. Taking into account the quantum nature and the spatial propagation of light, we analyze interactions involving few-photon pulses. We show that this system can be used for the generation of nonclassical states of light including trains of single photons with an avoided volume between them, for implementing photon-photon gates, as well as for studying many-body phenomena with strongly correlated photons.
Physical Review Letters | 1999
Mikhail D. Lukin; A. B. Matsko; Michael Fleischhauer; Marlan O. Scully
We investigate the quantum properties of fields generated by resonantly enhanced wave mixing based on atomic coherence in Raman systems. We show that such a process can be used for generation of pairs of Stokes and anti-Stokes fields with nearly perfect quantum correlations, yielding almost complete (i.e. 100%) squeezing without the use of a cavity. We discuss the extension of the wave mixing interactions into the domain of a few interacting light quanta.
Physical Review B | 2010
David Dzsotjan; Anders S. Sørensen; Michael Fleischhauer
We investigate a system consisting of a single, as well as two emitters strongly coupled to surface plasmon modes of a nano-wire using a Green function approach. Explicit expressions are derived for the spontaneous decay rate into the plasmon modes and for the atom-plasmon coupling as well as a plasmon-mediated atom-atom coupling. Phenomena due to the presence of losses in the metal are discussed. In case of two atoms, we observe Dicke sub- and superradiance resulting from their plasmon-mediated interaction. Based on this phenomenon, we propose a scheme for a deterministic two-qubit quantum gate. We also discuss a possible realization of interesting many-body Hamiltonians, such as the spin-boson model, using strong emitter-plasmon coupling.
Optics Communications | 1992
Michael Fleischhauer; Christoph H. Keitel; Marlan O. Scully; Chang Su
Abstract For the Λ quantum beat laser we investigate the generation of coherence between the two lower levels via incoherent pumping of these two levels to a fourth auxiliary level. It will be shown that this way of establishing coherence also leads to lasing without inversion and to an enhancement of the index of refraction at a point of vanishing absorption.