Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Franti is active.

Publication


Featured researches published by Michael Franti.


Circulation Research | 2015

GDF11 Does Not Rescue Aging-Related Pathological Hypertrophy

Shavonn Smith; Xiaoxiao Zhang; Xiaoying Zhang; Polina Gross; Timothy Starosta; Sadia Mohsin; Michael Franti; Priyanka Gupta; David B. Hayes; Maria Myzithras; Julius Kahn; James Tanner; Steven M. Weldon; Ashraf Khalil; Xinji Guo; Abdelkarim Sabri; Xiongwen Chen; Scott M. MacDonnell; Steven R. Houser

RATIONALE Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β super family of secreted factors. A recent study showed that reduced GDF11 blood levels with aging was associated with pathological cardiac hypertrophy (PCH) and restoring GDF11 to normal levels in old mice rescued PCH. OBJECTIVE To determine whether and by what mechanism GDF11 rescues aging dependent PCH. METHODS AND RESULTS Twenty-four-month-old C57BL/6 mice were given a daily injection of either recombinant (r) GDF11 at 0.1 mg/kg or vehicle for 28 days. rGDF11 bioactivity was confirmed in vitro. After treatment, rGDF11 levels were significantly increased, but there was no significant effect on either heart weight or body weight. Heart weight/body weight ratios of old mice were not different from 8- or 12-week-old animals, and the PCH marker atrial natriuretic peptide was not different in young versus old mice. Ejection fraction, internal ventricular dimension, and septal wall thickness were not significantly different between rGDF11 and vehicle-treated animals at baseline and remained unchanged at 1, 2, and 4 weeks of treatment. There was no difference in myocyte cross-sectional area rGDF11 versus vehicle-treated old animals. In vitro studies using phenylephrine-treated neonatal rat ventricular myocytes, to explore the putative antihypertrophic effects of GDF11, showed that GDF11 did not reduce neonatal rat ventricular myocytes hypertrophy, but instead induced hypertrophy. CONCLUSIONS Our studies show that there is no age-related PCH in disease-free 24-month-old C57BL/6 mice and that restoring GDF11 in old mice has no effect on cardiac structure or function.


Antimicrobial Agents and Chemotherapy | 2013

Phosphatidylinositol 4-Kinase III Beta Is Essential for Replication of Human Rhinovirus and Its Inhibition Causes a Lethal Phenotype In Vivo

Catherine Spickler; Julie Lippens; Marie-Kristine Laberge; Sophie Desmeules; Edith Bellavance; Michel Garneau; Tim Guo; Oliver Hucke; Pieter Leyssen; Johan Neyts; Frédéric H. Vaillancourt; Anne Decor; Jeff O'Meara; Michael Franti; Annick Gauthier

ABSTRACT Human rhinovirus (HRV) is the predominant cause of the common cold, but more importantly, infection may have serious repercussions in asthmatics and chronic obstructive pulmonary disorder (COPD) patients. A cell-based antiviral screen against HRV was performed with a subset of our proprietary compound collection, and an aminothiazole series with pan-HRV species and enteroviral activity was identified. The series was found to act at the level of replication in the HRV infectious cycle. In vitro selection and sequencing of aminothiazole series-resistant HRV variants revealed a single-nucleotide mutation leading to the amino acid change I42V in the essential HRV 3A protein. This same mutation has been previously implicated in resistance to enviroxime, a former clinical-stage antipicornavirus agent. Enviroxime-like compounds have recently been shown to target the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KIIIβ). A good correlation between PI4KIIIβ activity and HRV antiviral potency was found when analyzing the data over 80 compounds of the aminothiazole series, covering a 750-fold potency range. The mechanism of action through PI4KIIIβ inhibition was further demonstrated by small interfering RNA (siRNA) knockdown of PI4KB, which reduced HRV replication and also increased the potency of the PI4KIIIβ inhibitors. Inhibitors from two different structural classes with promising pharmacokinetic profiles and with very good selectivity for PI4KIIIβ were used to dissociate compound-related toxicity from target-related toxicity. Mortality was seen in all dosing groups of mice treated with either compound, therefore suggesting that short-term inhibition of PI4KIIIβ is deleterious.


Virology | 2013

Neutralizing antibodies are unable to inhibit direct viral cell-to-cell spread of human cytomegalovirus

Christian L. Jacob; Louie Lamorte; Eliud Sepulveda; Ivo C. Lorenz; Annick Gauthier; Michael Franti

Infection with human cytomegalovirus (CMV) during pregnancy is the most common cause of congenital disorders, and can lead to severe life-long disabilities with associated high cost of care. Since there is no vaccine or effective treatment, current efforts are focused on identifying potent neutralizing antibodies. A panel of CMV monoclonal antibodies identified from patent applications, was synthesized and expressed in order to reproduce data from the literature showing that anti-glycoprotein B antibodies neutralized virus entry into all cell types and that anti-pentameric complex antibodies are highly potent in preventing virus entry into epithelial cells. It had not been established whether antibodies could prevent subsequent rounds of infection that are mediated primarily by direct cell-to-cell transmission. A thorough validation of a plaque reduction assay to monitor cell-to-cell spread led to the conclusion that neutralizing antibodies do not significantly inhibit plaque formation or reduce plaque size when they are added post-infection.


Cell Reports | 2015

RNASEK Is a V-ATPase-Associated Factor Required for Endocytosis and the Replication of Rhinovirus, Influenza A Virus, and Dengue Virus

Jill M. Perreira; Aaron M. Aker; George Savidis; Christopher R. Chin; William M. McDougall; Jocelyn M. Portmann; Paul Meraner; Miles Smith; Motiur Rahman; Richard E. Baker; Annick Gauthier; Michael Franti; Abraham L. Brass

Human rhinovirus (HRV) causes upper respiratory infections and asthma exacerbations. We screened multiple orthologous RNAi reagents and identified host proteins that modulate HRV replication. Here, we show that RNASEK, a transmembrane protein, was needed for the replication of HRV, influenza A virus, and dengue virus. RNASEK localizes to the cell surface and endosomal pathway and closely associates with the vacuolar ATPase (V-ATPase) proton pump. RNASEK is required for endocytosis, and its depletion produces enlarged clathrin-coated pits (CCPs) at the cell surface. These enlarged CCPs contain endocytic cargo and are bound by the scissioning GTPase, DNM2. Loss of RNASEK alters the localization of multiple V-ATPase subunits and lowers the levels of the ATP6AP1 subunit. Together, our results show that RNASEK closely associates with the V-ATPase and is required for its function; its loss prevents the early events of endocytosis and the replication of multiple pathogenic viruses.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2016

Crystal structure of human GDF11.

Anil K. Padyana; Bhamini Vaidialingam; David B. Hayes; Priyanka Gupta; Michael Franti; Neil A. Farrow

Members of the TGF-β family of proteins are believed to play critical roles in cellular signaling processes such as those involved in muscle differentiation. The extent to which individual family members have been characterized and linked to biological function varies greatly. The role of myostatin, also known as growth differentiation factor 8 (GDF8), as an inhibitor of muscle differentiation is well understood through genetic linkages. In contrast, the role of growth differentiation factor 11 (GDF11) is much less well understood. In humans, the mature forms of GDF11 and myostatin are over 94% identical. In order to understand the role that the small differences in sequence may play in the differential signaling of these molecules, the crystal structure of GDF11 was determined to a resolution of 1.50 Å. A comparison of the GDF11 structure with those of other family members reveals that the canonical TGF-β domain fold is conserved. A detailed structural comparison of GDF11 and myostatin shows that several of the differences between these proteins are likely to be localized at interfaces that are critical for the interaction with downstream receptors and inhibitors.


Aaps Journal | 2017

GDF11 Treatment Attenuates the Recovery of Skeletal Muscle Function After Injury in Older Rats

Yu Zhou; Neel Sharma; David Dukes; Maria Myzithras; Priyanka Gupta; Ashraf Khalil; Julius Kahn; Jennifer Ahlberg; David B. Hayes; Michael Franti; Tracy Criswell

Loss of skeletal muscle mass and function results in loss of mobility for elderly patients. Novel therapies that can protect and/or restore muscle function during aging would have profound effects on the quality of life for this population. Growth differentiation factor 11 (GDF11) has been proposed as a “youthful” circulating factor that can restore cardiac, neural, and skeletal muscle functions in aging animals. However, conflicting data has been recently published that casts doubt on these assertions. We used a complex rat model of skeletal muscle injury that physiologically mimics injuries seen in patients; to investigate the ability of GDF11 and to enhance skeletal muscle regeneration after injury in older rats. Our data showed that GDF11 treatment resulted in a significant increase in tissue fibrosis, accompanied by attenuated functional recovery, as compared to animals treated with vehicle alone. GDF11 impaired the recovery of skeletal muscle function in older rats after injury.


Bioanalysis | 2016

Development of an ultra-sensitive Simoa assay to enable GDF11 detection: a comparison across bioanalytical platforms

Maria Myzithras; Hua Li; Tammy Bigwarfe; Erica Waltz; Priyanka Gupta; Sarah Low; David B. Hayes; Scott M. MacDonnell; Jennifer Ahlberg; Michael Franti; Simon Roberts

BACKGROUND Four bioanalytical platforms were evaluated to optimize sensitivity and enable detection of recombinant human GDF11 in biological matrices; ELISA, Meso Scale Discovery, Gyrolab xP Workstation and Simoa HD-1. Results & methodology: After completion of custom assay development, the single-molecule ELISA (Simoa) achieved the greatest sensitivity with a lower limit of quantitation of 0.1 ng/ml, an improvement of 100-fold over the next sensitive platform (MSD). DISCUSSION & CONCLUSION This improvement was essential to enable detection of GDF11 in biological samples, and without the technology the sensitivity achieved on the other platforms would not have been sufficient. Other factors such as ease of use, cost, assay time and automation capability can also be considered when developing custom immunoassays, based on the requirements of the bioanalyst.


Journal of Pharmacology and Experimental Therapeutics | 2016

Differential Binding Activity of TGF-β Family Proteins to Select TGF-β Receptors.

Ashraf Khalil; Hyna Dotimas; Julius Kahn; Jane E. Lamerdin; David B. Hayes; Priyanka Gupta; Michael Franti

Growth differentiation factor-11 (GDF11) and myostatin (MSTN) are highly related transforming growth factor-β (TGF-β) ligands with 89% amino acid sequence homology. They have different biologic activities and diverse tissue distribution patterns. However, the activities of these ligands are indistinguishable in in vitro assays. SMAD2/3 signaling has been identified as the canonical pathway for GDF11 and MSTN, However, it remains unclear which receptor heterodimer and which antagonists preferentially mediate and regulate signaling. In this study, we investigated the initiation and regulation of GDF11 and MSTN signaling at the receptor level using a novel receptor dimerization detection technology. We used the dimerization platform to link early receptor binding events to intracellular downstream signaling. This approach was instrumental in revealing differential receptor binding activity within the TGF-β family. We verified the ActR2b/ALK5 heterodimer as the predominant receptor for GDF11- and MSTN-induced SMAD2/3 signaling. We also showed ALK7 specifically mediates activin-B signaling. We verified follistatin as a potent antagonist to neutralize both SMAD2/3 signaling and receptor dimerization. More remarkably, we showed that the two related antagonists, growth and differentiation factor–associated serum protein (GASP)-1 and GASP2, differentially regulate GDF11 (and MSTN) signaling. GASP1 blocks both receptor dimerization and downstream signaling. However, GASP2 blocks only downstream signaling without interference from receptor dimerization. Our data strongly suggest that physical binding of GDF11 (and MSTN) to both ActR2b and ALK5 receptors is required for initiation of signaling.


Journal of Virological Methods | 2014

Development of a high-throughput human cytomegalovirus quantitative PCR cell-based assay

Sonia Tremblay; Nathalie Dansereau; Scott Balsitis; Michael Franti; Louie Lamorte

This report describes the development and optimization of a quantitative real-time PCR assay for evaluating human cytomegalovirus (CMV) replication in vitro and susceptibility to antiviral drugs. This assay measures the level of intracellular CMV DNA in both 96- and 384-well microplate formats. Normalization of CMV levels using mitochondrial DNA enhanced the robustness of the assay and minimized variability. The assay throughput was further enhanced by eliminating several wash steps and by lysing the cells directly in the presence of cell culture media, both of which had no impact on the assay metrics. The assay was validated using several known CMV antiviral compounds. The CMV quantitative PCR (qPCR) assay represents a rapid, reliable and reproducible method that can be used with both CMV laboratory strains and clinical isolates.


ACS Medicinal Chemistry Letters | 2016

Discovery of Potent, Orally Bioavailable Inhibitors of Human Cytomegalovirus

Lee Fader; Martine Brault; Jessica Desjardins; Nathalie Dansereau; Louie Lamorte; Sonia Tremblay; François Bilodeau; Josée Bordeleau; Martin Duplessis; Vida Gorys; James Gillard; James L. Gleason; Clint James; Marc-André Joly; Cyrille Kuhn; Montse Llinas-Brunet; Laibin Luo; Louis Morency; Sébastien Morin; Mathieu Parisien; Maude Poirier; Carl Thibeault; Thao Trinh; Claudio Sturino; Sanjay Srivastava; Christiane Yoakim; Michael Franti

A high-throughput screen based on a viral replication assay was used to identify inhibitors of the human cytomegalovirus. Using this approach, hit compound 1 was identified as a 4 μM inhibitor of HCMV that was specific and selective over other herpes viruses. Time of addition studies indicated compound 1 exerted its antiviral effect early in the viral life cycle. Mechanism of action studies also revealed that this series inhibited infection of MRC-5 and ARPE19 cells by free virus and via direct cell-to-cell spread from infected to uninfected cells. Preliminary structure-activity relationships demonstrated that the potency of compound 1 could be improved to a low nanomolar level, but metabolic stability was a key optimization parameter for this series. A strategy focused on minimizing metabolic hydrolysis of the N1-amide led to an alternative scaffold in this series with improved metabolic stability and good pharmacokinetic parameters in rat.

Collaboration


Dive into the Michael Franti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge