Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael G. Brattain is active.

Publication


Featured researches published by Michael G. Brattain.


Journal of Biological Chemistry | 1995

Demonstration That Mutation of the Type II Transforming Growth Factor β Receptor Inactivates Its Tumor Suppressor Activity in Replication Error-positive Colon Carcinoma Cells

Jing Wang; LuZhe Sun; Lois Myeroff; Xiao-Fan Wang; Larry E. Gentry; Junhua Yang; Jiurong Liang; Elizabeth Zborowska; Sanford D. Markowitz; James K V Willson; Michael G. Brattain

Escape from negative growth regulation by transforming growth factor β (TGF-β) as a result of the loss of TGF-β type II receptor (RII) expression has been found to be associated with the replication error (RER) colorectal cancer genotype, which is characteristic of hereditary nonpolyposis colorectal cancers. The RER-positive HCT 116 colon carcinoma cell line was examined for RII mutations. A 1-base deletion was found within a sequence of 10 repeating adenines (nucleotides 709-718), which resulted in a frameshift mutation. Although it is reasonable to predict that the loss of RII function would be an important determinant of malignancy, the large number of potential mutations in cells of this phenotype raises the possibility that an RII mutation may not be a key event in the tumorigenic phenotype of these cells. One way to test directly the importance of RII mutations in determining the malignant phenotype would be to restore its expression. If restoration of expression leads to diminished tumorigenicity, it would indicate that RII mutation is an important determinant of malignancy in the RER phenotype. To determine whether restoration of RII would lead to reversal of malignancy in RER colon cancers, an RII expression vector was transfected into the HCT 116 cell line. RII stable clones showed mRNA and protein expression of transfected RII. The fibronectin mRNA level was increased by exogenous TGF-β treatment in a dose-dependent manner in RII-positive clones, whereas the control cells remained insensitive. The RII transfectants showed reduced clonogenicity in both monolayer culture and soft agarose. They were growth arrested at a lower saturation density than control cells. TGF-β-neutralizing antibody stimulated the proliferation of RII-transfected but not control cells, indicating that the alterations in the growth parameters of the transfected cells were due to the acquisition of autocrine-negative activity. Tumorigenicity in athymic mice was reduced and delayed in RII transfectants. These results indicate that reconstitution of TGF-β autocrine activity by reexpression of RII can reverse malignancy in RER colon cancers, thus verifying that the malignancy of hereditary nonpolyposis colorectal cancer can be directly associated with the loss of RII expression.


Cancer and Metastasis Reviews | 1984

Heterogeneity of human colon carcinoma.

Michael G. Brattain; Alan E. Levine; Subhas Chakrabarty; Lynn C. Yeoman; James K. V. Willson; Long Bh

SummaryIn order to better understand colon cancer, a model system reflecting the heterogenous nature of this disease was developed and used in the development of new cytotoxic and non-cytotoxic therapeutic approaches. A large bank of colon carcinoma cell lines was established from primary human colon carcinomas and grouped based on their tumorigenicity in athymic mice, their growth rates in soft agarose and in tissue culture, and their secreted levels of carcinoembryonic antigen. These cell lines were later characterized based on cell surface proteins and antigens detected with antisera raised against a differentiated colon carcinoma cell line. Although these biochemical markers correlated with the biological classification of these cell lines, there was still extensive heterogeneity within each group in all properties examined. This colon carcinoma cell system was used to study natural vs. selected resistance to the anticancer drug mitomycin C (MMC). The differing IC50 values in vitro were reflected in the inhibition by MMC of xenograft growth in athymic mice. A new, more readily bioactivatable analogue of MMC was tried and shown to be more active in vitro and in vivo, suggesting that rapid efflux of the drug before activation may be important in examining causes of resistance to MMC. Another approach to the treatment of colon cancer is the use of non-cytotoxic agents such as growth factors and differentiation agents to restore normal growth to the malignant cells. We have isolated and characterized two types of polypeptides from colon carcinoma cells and conditioned medium from these cells. The first, transforming growth factors (TGFs) confer a transformed phenotype on non-transformed fibroblasts while the second, tumor inhibitory factors (TIFs), inhibits the anchorage independent growth of transformed cells. The fact that extracts of colon carcinoma cells contain both activities suggests that the heterogeneity of the cell lines could be due to different levels of TGFs and TIFs produced. The effectiveness of differentiation agents to restore normal growth control using a transformed mouse embryo cell line was examined. Treatment of these cells with differentiation agents restored normal growth control to these cells. An increased synthesis of TGFs resulted from these treatments. Therefore, differentiation agents may be useful in non-cytotoxic treatment. The use of this model system for human colon carcinoma will hopefully lead to more effective drugs for the treatment of colon cancer in man.


Experimental Cell Research | 1989

Differential sensitivity of subclasses of human colon carcinoma cell lines to the growth inhibitory effects of transforming growth factor-β1

Naseema M. Hoosein; Mary K. McKnight; Alan E. Levine; Kathleen M. Mulder; Karla E. Childress; Diane E. Brattain; Michael G. Brattain

In this study we have employed a model system comprising three groups of colon carcinoma cell lines to examine the growth-inhibitory effects of two molecular forms of transforming growth factor-beta (TGF-beta), TGF-beta 1 and TGF-beta 2. Aggressive, poorly differentiated colon carcinoma cells of group I did not respond to growth inhibitory effects of TGF-beta 1 or TGF-beta 2, while less aggressive, well-differentiated cells of group III displayed marked sensitivity to both TGF-beta 1 and TGF-beta 2 in monolayer culture as well as in soft agarose. One moderately well-differentiated cell line from group II which has intermediate growth characteristics failed to respond to TGF-beta 1 or TGF-beta 2, but the growth of two other cell lines in this group was inhibited. TGF-beta 1 and TGF-beta 2 were equally potent, 50% growth inhibition for responsive cell lines being observed at a concentration of 1 ng/ml (40 pM). Antiproliferative effects of TGF-beta 1 and TGF-beta 2 in responsive cell lines of groups II and III were associated with morphological alterations and enhanced, concentration-dependent secretion of carcinoembryonic antigen. Radiolabeled TGF-beta 1 bound to all three groups of colon carcinoma cells with high affinity (Kd between 42 and 64 pM). These data indicate for the first time a strong correlation between the degree of differentiation of colon carcinoma cell lines and sensitivity to the antiproliferative and differentiation-promoting effects of TGF-beta 1 and TGF-beta 2.


Journal of Biological Chemistry | 1996

Reduced Expression of Transforming Growth Factor β Type I Receptor Contributes to the Malignancy of Human Colon Carcinoma Cells

Jing Wang; Wei Han; Elizabeth Zborowska; Jiurong Liang; Xiao-Fan Wang; James K V Willson; LuZhe Sun; Michael G. Brattain

Transforming growth factor β (TGFβ) type I (RI) and type II (RII) receptors are essential for TGFβ signal transduction. A human colon carcinoma cell line, designated GEO, is marginally responsive to TGFβ and expresses a low level of RI mRNA relative to colon carcinoma cells, which are highly responsive to TGFβ. Hence, the role of RI as a limiting factor for TGFβ sensitivity and the contribution of low RI levels to the malignant phenotype of GEO cells were examined. Stable transfection of a tetracycline-regulatable rat RI cDNA increased TGFβ1 binding to RI and resulted in increased growth inhibition by exogenous TGFβ1. In contrast, although stable transfection of an RII expression vector into the same GEO cells increased TGFβ1 binding to RII, growth inhibition by exogenous TGFβ1 was not altered. This indicated that the low level of RI is a limiting factor for the growth-inhibitory effects of TGFβ in GEO cells. RI-transfected cells were growth-arrested at a lower saturation density than GEO control cells. They also showed reduced growth and clonogenicity in plating efficiency and soft agarose assays, whereas RII-transfected cells did not show any differences from the NEO control cells in these assays. Tetracycline repressed RI expression in transfected cells and reversed the reduction in plating efficiency of RI-transfected clones, confirming that growth effects were due to increased RI expression in transfected cells. TGFβ1 neutralizing antibody stimulated the proliferation of RI-transfected cells but had little effect on GEO control cells, indicating that increased autocrine-negative TGFβ activity also resulted from increased RI expression. Tumorigenicity in athymic nude mice was significantly delayed in RI-transfected cells. These results indicate that low RI expression can be a limiting factor for response to exogenous TGFβ, as well as TGFβ autocrine-negative activity, and that reduction of RI expression can contribute to malignant progression.


Experimental Cell Research | 1990

Evidence for autocrine growth stimulation of cultured colon tumor cells by a gastrin/cholecystokinin-like peptide

Naseema M. Hoosein; Peter A. Kiener; Robert C. Curry; Michael G. Brattain

The peptide gastrin has been shown to have growth stimulatory effects on normal as well as malignant gastrointestinal tissue. In this study, we have examined the possibility of autocrine growth-stimulation of cultured colon tumor cells by a gastrin-like peptide. The gastrin/CCK receptor antagonist dibutyryl cGMP inhibited the proliferation of two human colon carcinoma cell lines HCT 116 (EC50 = 1.3 mM) and CBS (EC50 = 2.5 mM) in a dose-dependent manner. Marked morphological changes were observed in HCT 116 cells after treatment with 1 mM dibutyryl cGMP. In receptor binding assays, dibutyryl cGMP competed with 125I-labeled gastrin for binding to HCT 116 cells (IC50 = 1.8 mM). Another derivative of cyclic GMP, 8-Bromo cGMP used as control due to its considerably weaker affinity for the gastrin/CCK receptor, did not compete with radiolabeled gastrin for binding to HCT 116 cells and had no effect on the morphology or proliferation in monolayer cultures of HCT 116 or CBS cells at concentrations up to 10 mM. Antigastrin/CCK antisera was also found to have dose-dependent cytostatic effects on HCT 116 and CBS cells adapted to growth in serum-free medium. The antiproliferative effect of the gastrin/CCK receptor antagonist and antigastrin/CCK antibodies suggested that a gastrin-like peptide secreted by these cells may promote growth. Radioimmunoassay of the conditioned medium of these two cell lines indicated the presence of a gastrin-like peptide (10-50 pg/10(6) cells/72 h). Northern analysis using an oligonucleotide DNA probe complementary to the nucleotide sequence coding the dodecapeptide carboxyl terminal of human gastrin showed three transcripts (0.7, 3.3, and 3.7 kb) that hybridized with the probe. These data provide, for the first time, evidence for an autocrine growth stimulatory role of a gastrin/CCK-like peptide in cultured colon tumor cells.


Journal of Biological Chemistry | 2005

Trichostatin A induces transforming growth factor β type II receptor promoter activity and acetylation of Sp1 by recruitment of PCAF/p300 to a Sp1.NF-Y complex

Weiqi Huang; Shujie Zhao; Sudhakar Ammanamanchi; Michael G. Brattain; Kolaparthi Venkatasubbarao; James W. Freeman

Transforming growth factor β type II receptor (TβRII) is a tumor suppressor gene that can be transcriptionally silenced by histone deacetylases (HDACs) in cancer cells. In this report, we demonstrated the mechanism by which trichostatin A (TSA), an inhibitor of HDAC, induces the expression of TβRII in human pancreatic cancer cell lines by modulating the transcriptional components that bind a specific DNA region of the TβRII promoter. This region of the TβRII promoter possesses Sp1 and NF-Y binding sites in close proximity (located at –102 and –83, respectively). Treatment of cells with TSA activates the TβRII promoter in a time-dependent manner through the recruitment of p300 and PCAF into a Sp1·NF-Y·HDAC complex that binds this DNA element. The recruitment of p300 and PCAF into the complex is associated with a concomitant acetylation of Sp1 and an overall decrease in the amount of HDAC associated with the complex. Transient overexpression of p300 or PCAF potentiated TSA-induced TβRII promoter activity. The effect of PCAF was dependent on its histone acetyltransferase activity, whereas that of p300 was independent. Stable transfection of PCAF caused an increase in TβRII mRNA expression, the association of PCAF with TβRII promoter, and the acetylation of Sp1. Taken together, these results showed that TSA treatment of pancreatic cancer cells leads to transcriptional activation of the TβRII promoter through modulation of the components of a Sp1·NF-Y·p300·PCAF·HDAC-1 multiprotein complex. Moreover, the interaction of NF-Y with the Sp1-associated complex may further explain why this specific Sp1 site mediates transcriptional responsiveness to TSA.


FEBS Letters | 2007

The maximal size of protein to diffuse through the nuclear pore is larger than 60 kDa

Ruiwen Wang; Michael G. Brattain

It has generally been believed that the diffusion limit set by the nuclear pore for protein is 60 kDa. We here studied the cellular localization of several artificial proteins and found that the diffusion limit set by the nuclear pore is not as small as previously thought. The results indicate that the maximal size of protein to diffuse through the nuclear pore complex could be quite larger than 60 kDa, thus greatly extending the diffusion limit that the nuclear pore can accommodate.


Cancer Research | 2004

Blockade of epidermal growth factor- or heregulin-dependent ErbB2 activation with the anti-ErbB2 monoclonal antibody 2C4 has divergent downstream signaling and growth effects.

James G. Jackson; Patricia J. St. Clair; Mark X. Sliwkowski; Michael G. Brattain

Due to heterodimerization and a variety of stimulating ligands, the ErbB receptor system is both diverse and flexible, which proves particularly advantageous to the aberrant signaling of cancer cells. However, specific mechanisms of how a particular receptor contributes to generating the flexibility that leads to aberrant growth regulation have not been well described. We compared the utilization of ErbB2 in response to epidermal growth factor (EGF) and heregulin stimulation in colon carcinoma cells. Anti-ErbB2 monoclonal antibody 2C4 blocked heregulin-stimulated phosphorylation of ErbB2 and ErbB3; activation of mitogen-activated protein kinase (MAPK), phosphatidylinositol 3′-kinase (PI3K), and Akt; proliferation; and anchorage-independent growth. 2C4 blocked EGF-mediated phosphorylation of ErbB2 and inhibited PI3K/Akt and anchorage-independent growth but did not affect ErbB1 or MAPK. Immunoprecipitations showed that ErbB3 and Grb2-associated binder (Gab) 1 were phosphorylated and associated with PI3K activity after heregulin treatment and that Gab1 and Gab2, but not ErbB3, were phosphorylated and associated with PI3K activity after EGF treatment. These data show that monoclonal antibody 2C4 inhibited all aspects of heregulin signaling as well as anchorage-independent and monolayer growth. Furthermore, we identify ErbB2 as a critical component of EGF signaling to the Gab1/Gab2-PI3K-Akt pathway and anchorage-independent growth, but EGF stimulation of MAPK and monolayer growth can occur efficiently without the contribution of ErbB2.


Annals of Surgical Oncology | 2006

Activated Akt and Erk expression and survival after surgery in pancreatic carcinoma

Krishdeep S. Chadha; Thaer Khoury; Jihnhee Yu; Jennifer D. Black; John F. Gibbs; Boris W. Kuvshinoff; Dongfeng Tan; Michael G. Brattain; Milind Javle

BackgroundLong-term survival of surgically resectable pancreatic cancer patients is uncommon. The epidermal growth factor receptor (EGFR) and the phosphoinositol-3-kinase pathways are often activated in pancreatic cancer, and an understanding of their role in resected cases may help refine adjuvant therapy.MethodsWe investigated the expression of EGFR, Erk, Akt, and their phosphoforms (p-) in pancreatectomy specimens and correlated these with survival. Thirty-nine consecutive surgically resected pancreatic adenocarcinoma cases were included. Immunohistochemical staining of paraffin-embedded blocks was performed by using monoclonal antibodies against EGFR, Erk, p-Erk, Akt, and p-Akt. A standard immunoperoxidase technique was used to detect the avidin-biotin peroxidase complex. Immunostaining was visually scored with the histoscore method by two surgical pathologists.ResultsPatient characteristics were as follows: 17 men and 22 women; median age, 66 years; and American Joint Committee on Cancer stage I, 5 patients; stage II, 4 patients; stage III, 27 patients; and stage IV, 3 patients. The tumor was World Health Organization grade 1 in 4, grade 2 in 17, and grade 3 in 18 cases. Adjuvant therapies were chemotherapy (n = 6), radiotherapy (n = 1), and chemoradiotherapy (n = 17). Immunohistochemistry revealed positive expression of EGFR in 30.8%, Erk in 92.3%, p-Erk in 45.9%, Akt in 71.8%, and p-Akt in 20.5% of cases. On univariate analyses, tumor grade (P = .0098), p-Akt (P = .0003), and p-Erk (P = .0052) expression correlated with survival. On multivariate analyses, age (P = .0002; hazard ratio [HR], 1.8), grade (P = .00318; HR, 3.0), Akt (P = .0433; HR, .4), p-Akt (P = .0002; HR, .2), and p-Erk (P = .0003; HR, 3.5) expression correlated significantly with survival.Conclusionsp-Erk and p-Akt expression may have prognostic and therapeutic implications in pancreatic cancer.


Oncogene | 2002

Extracellular domain of TGFβ type III receptor inhibits angiogenesis and tumor growth in human cancer cells

Abhik Bandyopadhyay; Yong Zhu; Shazli N. Malik; Jeffrey I. Kreisberg; Michael G. Brattain; Eugene A. Sprague; Jian Luo; Fernando López-Casillas; LuZhe Sun

TGFβ overexpression in human cancer cells has been shown to promote tumor progression. In the present study, we sought to determine whether sequestration of endogenous TGFβ by the expression of a soluble TGFβ type III receptor (sRIII), can reduce malignancy in human carcinoma cells and whether the tumor-suppressive activity of sRIII is associated with the inhibition of angiogenesis. Ectopic expression of sRIII significantly inhibited the growth of tumors formed by human colon carcinoma HCT116 and breast carcinoma MDA-MB-435 cells in nude mice. It also reduced the metastatic potential of the MDA-MB-435 cells. Thus, endogenous TGFβ appears to be necessary for the progression of these two carcinomas. Furthermore, when the tumor cells were mixed with Matrigel and embedded subcutaneously in nude mice, the blood volume in Matrigel plugs containing sRIII-expressing cells as indicated by hemoglobin levels was significantly lower than that in Matrigel plugs containing the respective control cells. Blood vessel counts in paraffin sections of the Matrigel plugs containing sRIII-expressing cells were also significantly lower than those in paraffin sections of the Matrigel plugs containing control cells. Treatment of human endothelial cells with a recombinant sRIII significantly inhibited their ability to form a capillary web structure on Matrigel. These results for the first time indicate that the sRIII-induced tumor suppression appears to be in part due to the inhibition of angiogenesis.

Collaboration


Dive into the Michael G. Brattain's collaboration.

Top Co-Authors

Avatar

Jing Wang

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Ashwani Rajput

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James K V Willson

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alan E. Levine

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Lisa E. Humphrey

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sanjib Chowdhury

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Diane E. Brattain

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

LuZhe Sun

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Gillian Howell

Roswell Park Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge