Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael G. Francki is active.

Publication


Featured researches published by Michael G. Francki.


Functional & Integrative Genomics | 2004

Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison.

Chengdao Li; Peixiang Ni; Michael G. Francki; A. Hunter; Yong Zhang; D. Schibeci; Heng Li; Allen Tarr; Jun Wang; M. Cakir; Jun Yu; M. Bellgard; Reg Lance; R. Appels

Pre-harvest sprouting results in significant economic loss for the grain industry around the world. Lack of adequate seed dormancy is the major reason for pre-harvest sprouting in the field under wet weather conditions. Although this trait is governed by multiple genes it is also highly heritable. A major QTL controlling both pre-harvest sprouting and seed dormancy has been identified on the long arm of barley chromosome 5H, and it explains over 70% of the phenotypic variation. Comparative genomics approaches among barley, wheat and rice were used to identify candidate gene(s) controlling seed dormancy and hence one aspect of pre-harvest sprouting. The barley seed dormancy/pre-harvest sprouting QTL was located in a region that showed good synteny with the terminal end of the long arm of rice chromosome 3. The rice DNA sequences were annotated and a gene encoding GA20-oxidase was identified as a candidate gene controlling the seed dormancy/pre-harvest sprouting QTL on 5HL. This chromosomal region also shared synteny with the telomere region of wheat chromosome 4AL, but was located outside of the QTL reported for seed dormancy in wheat. The wheat chromosome 4AL QTL region for seed dormancy was syntenic to both rice chromosome 3 and 11. In both cases, corresponding QTLs for seed dormancy have been mapped in rice.


Molecular Genetics and Genomics | 2009

Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers

Michael G. Francki; Esther Walker; Allison C. Crawford; Sue Broughton; H. W. Ohm; I. Barclay; R. Wilson; Robyn McLean

A number of technologies are available to increase the abundance of DNA markers and contribute to developing high resolution genetic maps suitable for genetic analysis. The aim of this study was to expand the number of Diversity Array Technology (DArT) markers on the wheat array that can be mapped in the wheat genome, and to determine their chromosomal location with respect to simple sequence repeat (SSR) markers and their position on the cytogenetic map. A total of 749 and 512 individual DArT and SSR markers, respectively, were identified on at least one of four genetic maps derived from recombinant inbred line (RIL) or doubled haploid (DH) populations. A number of clustered DArT markers were observed in each genetic map, in which 20–34% of markers were redundant. Segregation distortion of DArT and SSR markers was also observed in each mapping population. Only 14% of markers on the Version 2.0 wheat array were assigned to chromosomal bins by deletion mapping using aneuploid lines. In this regard, methylation effects need to be considered when applying DArT marker in genetic mapping. However, deletion mapping of DArT markers provides a reference to align genetic and cytogenetic maps and estimate the coverage of DNA markers across the wheat genome.


Theoretical and Applied Genetics | 2005

QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.).

Noel O. I. Cogan; K. F. Smith; Toshihiko Yamada; Michael G. Francki; Anita C. Vecchies; Elizabeth S. Jones; German Spangenberg; John W. Forster

Genetic control of herbage quality variation was assessed through the use of the molecular marker-based reference genetic map of perennial ryegrass (Lolium perenne L.). The restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) and genomic DNA-derived simple sequence repeat-based (SSR) framework marker set was enhanced, with RFLP loci corresponding to genes for key enzymes involved in lignin biosynthesis and fructan metabolism. Quality traits such as crude protein (CP) content, estimated in vivo dry matter digestibility (IVVDMD), neutral detergent fibre content (NDF), estimated metabolisable energy (EstME) and water soluble carbohydrate (WSC) content were measured by near infrared reflectance spectroscopy (NIRS) analysis of herbage harvests. Quantitative trait locus (QTL) analysis was performed using single-marker regression, simple interval mapping and composite interval mapping approaches, detecting a total of 42 QTLs from six different sampling experiments varying by developmental stage (anthesis or vegetative growth), location or year. Coincident QTLs were detected on linkage groups (LGs) 3, 5 and 7. The region on LG3 was associated with variation for all measured traits across various experimental datasets. The region on LG7 was associated with variation for all traits except CP, and is located in the vicinity of the lignin biosynthesis gene loci xlpomt1 (caffeic acid-O-methyltransferase), xlpccr1 (cinnamoyl CoA-reductase) and xlpssrcad 2.1 (cinnamyl alcohol dehydrogenase). Comparative genomics analysis of these gene classes with wheat (Triticum aestivum L.) provides evidence for conservation of gene order over evolutionary time and the basis for cross-specific genetic information transfer. The identification of co-location between QTLs and functionally associated genetic markers is critical for the implementation of marker-assisted selection programs and for linkage disequilibrium studies, which will enable future improvement strategies for perennial ryegrass.


BioTechniques | 2001

Incorporation of sodium sulfite into extraction protocol minimizes degradation of Acacia DNA.

Margaret Byrne; Bronwyn Macdonald; Michael G. Francki

The isolation of high-quality DNA from plants, especially woody plants, is often difficult...


Plant Biotechnology Journal | 2012

Identification, characterization and interpretation of single-nucleotide sequence variation in allopolyploid crop species

Sukhjiwan Kaur; Michael G. Francki; John W. Forster

An understanding of nature and extent of nucleotide sequence variation is required for programmes of discovery and characterization of single nucleotide polymorphisms (SNPs), which provide the most versatile class of molecular genetic marker. A majority of higher plant species are polyploids, and allopolyploidy, because of hybrid formation between closely related taxa, is very common. Mutational variation may arise both between allelic (homologous) sequences within individual subgenomes and between homoeologous sequences among subgenomes, in addition to paralogous variation between duplicated gene copies. Successful SNP validation in allopolyploids depends on differentiation of the sequence variation classes. A number of biological factors influence the feasibility of discrimination, including degree of gene family complexity, inbreeding or outbreeding reproductive habit, and the level of knowledge concerning progenitor diploid species. In addition, developments in high-throughput DNA sequencing and associated computational analysis provide general solutions for the genetic analysis of allopolyploids. These issues are explored in the context of experience from a range of allopolyploid species, representing grain (wheat and canola), forage (pasture legumes and grasses), and horticultural (strawberry) crop. Following SNP discovery, detection in routine genotyping applications also presents challenges for allopolyploids. Strategies based on either design of subgenome-specific SNP assays through homoeolocus-targeted polymerase chain reaction (PCR) amplification, or detection of incremental changes in nucleotide variant dosage, are described.


Genome | 2000

Identification and characterization of wheat-wheatgrass translocation lines and localization of barley yellow dwarf virus resistance

O.R. Crasta; Michael G. Francki; D B Bucholtz; Hari Sharma; J Zhang; R C Wang; H. W. Ohm; Joseph M. Anderson

Stable introgression of agronomically important traits into crop plants through wide crossing often requires the generation and identification of translocation lines. However, the low efficiency of identifying lines containing translocations is a significant limitation in utilizing valuable alien chromatin-derived traits. Selection of putative wheatgrass-wheat translocation lines based on segregation ratios of progeny from gamma-irradiated seed using a standard phenotypic analysis resulted in a low 4% success rate of identifying barley yellow dwarf virus (BYDV) resistant and susceptible translocation lines. However, 58% of the susceptible progeny of this irradiated seed contained a Thinopyrum intermedium chromosome-specific repetitive sequence, which indicated that gamma-irradiation-induced translocations occurred at high rate. Restriction fragment length polymorphism (RFLP) analysis of susceptible lines containing alien chromatin, their resistant sister lines and other resistant lines showed that more than one third of the progeny of gamma-irradiated double monosomic seeds contained wheatgrass-wheat translocations. Genomic in situ hybridization (GISH) analysis of selected lines confirmed that these were wheatgrass-wheat translocation lines. This approach of initially identifying BYDV susceptible deletion lines using an alien chromosome-specific repetitive sequence followed by RFLP analysis of their resistant sister lines efficiently identified resistant translocation lines and localized the BYDV resistance to the distal end of the introgressed Th. intermedium chromosome.


Genome | 2008

Isolation of wheat–rye 1RS recombinants that break the linkage between the stem rust resistance gene SrR and secalin

D. Ratna AnugrahwatiD.R. Anugrahwati; Kenneth W. ShepherdK.W. Shepherd; Dawn Verlin; Peng ZhangP. Zhang; Ghader Mirzaghaderi; Esther Walker; Michael G. Francki; Ian S. Dundas

Chromosome 1R of rye is a useful source of genes for disease resistance and enhanced agronomic performance in wheat. One of the most prevalent genes transferred to wheat from rye is the stem rust resistance gene Sr31. The recent emergence and spread of a stem rust pathotype virulent to this gene has refocused efforts to find and utilize alternative sources of resistance. There has been considerable effort to transfer a stem rust resistance gene, SrR, from Imperial rye, believed to be allelic to Sr31, into commercial wheat cultivars. However, the simultaneous transfer of genes at the Sec-1 locus encoding secalin seed storage proteins and their association with quality defects preclude the deployment of SrR in some commercial wheat breeding programs. Previous attempts to induce homoeologous recombination between wheat and rye chromosomes to break the linkage between SrR and Sec-1 whilst retaining the tightly linked major loci for wheat seed storage proteins, Gli-D1 and Glu-D3, and recover good dough quality characteristics, have been unsuccessful. We produced novel tertiary wheat-rye recombinant lines carrying different lengths of rye chromosome arm 1RS by inducing homoeologous recombination between the wheat 1D chromosome and a previously described secondary wheat-rye recombinant, DRA-1. Tertiary recombinant T6-1 (SrR+ Sec-1-) carries the target gene for stem rust resistance from rye and retains Gli-D1 but lacks the secalin locus. The tertiary recombinant T49-7 (SrR- Sec-1+) contains the secalin locus but lacks the stem rust resistance gene. T6-1 is expected to contribute to wheat breeding programs in Australia, whereas T49-7 provides opportunities to investigate whether the presence of secalins is responsible for the previously documented dough quality defects.


Molecular Genetics and Genomics | 2007

Arabidopsis–rice–wheat gene orthologues for Na+ transport and transcript analysis in wheat–L. elongatum aneuploids under salt stress

Daniel J. Mullan; Timothy D. Colmer; Michael G. Francki

Lophopyrum elongatum is a wild relative of wheat that provides a source of novel genes for improvement of the salt tolerance of bread wheat. Improved Na+ ‘exclusion’ is associated with salt tolerance in a wheat–L. elongatum amphiploid, in which a large proportion (ca. 50%) of the improved regulation of leaf Na+ concentrations is controlled by chromosome 3E. In this study, genes that might control Na+ accumulation, such as for transporters responsible for Na+ entry (HKT1) and exit (SOS1) from cells, or compartmentalisation within vacuoles (NHX1, NHX5, AVP1, AVP2) in the model plant, Arabidopsis thaliana, were targeted for comparative analyses in wheat. Putative rice orthologues were identified and characterised as a means to bridge the large evolutionary distance between genomes from the model dicot and the more complex grass species. Wheat orthologues were identified through BLAST searching to identify either FL-cDNAs or ESTs and were subsequently used to design primers to amplify genomic DNA. The probable orthologous status of the wheat genes was confirmed through demonstration of similar intron–exon structure with their counterparts in Arabidopsis and rice. The majority of exons for Arabidopsis, rice and wheat orthologues of NHX1, NHX5 and SOS1 were conserved except for those at the amino and carboxy terminal ends. However, additional exons were identified in the predicted NHX1 and SOS1 genes of rice and wheat, as compared with Arabidopsis, indicating gene rearrangement events during evolution from a common ancestor. Nullisomic–tetrasomic, deletion and addition lines in wheat were used to assign gene sequences to chromosome regions in wheat and L. elongatum. Most sequences were assigned to homoeologous chromosomes, however, in some instances, such as for SOS1, genes were mapped to other unpredicted locations. Differential transcript abundance under salt stress indicated a complex pattern of expression for wheat orthologues that may regulate Na+ accumulation in wheat lines containing chromosomes from L. elongatum. The identification of wheat orthologues to well characterized Arabidopsis genes, map locations and gene expression profiles increases our knowledge on the complex mechanisms regulating Na+ transport in wheat and wheat–L. elongatum lines under salt stress.


Chromosome Research | 1995

Analysis of rye B-chromosome structure using fluorescencein situ hybridization (FISH)

Timothy M. Wilkes; Michael G. Francki; Peter Langridge; A. Karp; R. Neil Jones; John W. Forster

Fluorescencein situ hybridization (FISH) has been used to analyse the structure of the rye B chromosome. Genomicin situ hybridization (GISH) demonstrates the high level of overall similarity between A and B chromosomes of rye, as well as the presence of a number of specific sequences. The B-specific repeat families D1100 and E3900 have been analysed in terms of their physical location and possible contiguity. Rye Bs contain members of the rye-specific dispersed repetitive family R173, as well as centromeric regions similar to those of the As. The B chromosomes analysed in our study lack detectable rDNA sequences. Anomalous results have been obtained with a number of subtelomeric repetitive probes from rye. Bs usually lack these sequences, but evidence is presented that in some cases A–B translocation events may relocate such sequences from the As to the Bs. These data are discussed in the context of current models for the origin of the B chromosome.


Functional & Integrative Genomics | 2004

Comparative organization of wheat homoeologous group 3S and 7L using wheat-rice synteny and identification of potential markers for genes controlling xanthophyll content in wheat

Michael G. Francki; M. Carter; K. Ryan; A. Hunter; M. Bellgard; R. Appels

EST and genomic DNA sequencing efforts for rice and wheat have provided the basis for interpreting genome organization and evolution. In this study we have used EST and genomic sequencing information and a bioinformatic approach in a two-step strategy to align portions of the wheat and rice genomes. In the first step, wheat ESTs were used to identify rice orthologs and it was shown that wheat 3S and rice 1 contain syntenic units with intrachromosomal rearrangements. Further analysis using anchored rice contiguous sequences and TBLASTX alignments in a second alignment step showed interruptions by orthologous genes that map elsewhere in the wheat genome. This indicates that gene content and order is not as conserved as large chromosomal blocks as previously predicted. Similarly, chromosome 7L contains syntenic units with rice 6 and 8 but is interrupted by combinations of intrachromosomal and interchromosomal rearrangements involving syntenic units and single gene orthologs from other rice chromosome groups. We have used the rice sequence annotations to identify genes that can be used to develop markers linked to biosynthetic pathways on 3BS controlling xanthophyll production in wheat and thus involved in determining flour colour.

Collaboration


Dive into the Michael G. Francki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Loughman

Government of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Mullan

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge