Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael G. Malkowski is active.

Publication


Featured researches published by Michael G. Malkowski.


Journal of Biological Chemistry | 2010

Structural Basis of Fatty Acid Substrate Binding to Cyclooxygenase-2

Alex J. Vecchio; Danielle M. Simmons; Michael G. Malkowski

The cyclooxygenases (COX-1 and COX-2) are membrane-associated heme-containing homodimers that generate prostaglandin H2 from arachidonic acid (AA). Although AA is the preferred substrate, other fatty acids are oxygenated by these enzymes with varying efficiencies. We determined the crystal structures of AA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) bound to Co3+-protoporphyrin IX-reconstituted murine COX-2 to 2.1, 2.4, and 2.65 Å, respectively. AA, EPA, and docosahexaenoic acid bind in different conformations in each monomer constituting the homodimer in their respective structures such that one monomer exhibits nonproductive binding and the other productive binding of the substrate in the cyclooxygenase channel. The interactions identified between protein and substrate when bound to COX-1 are conserved in our COX-2 structures, with the only notable difference being the lack of interaction of the carboxylate of AA and EPA with the side chain of Arg-120. Leu-531 exhibits a different side chain conformation when the nonproductive and productive binding modes of AA are compared. Unlike COX-1, mutating this residue to Ala, Phe, Pro, or Thr did not result in a significant loss of activity or substrate binding affinity. Determination of the L531F:AA crystal structure resulted in AA binding in the same global conformation in each monomer. We speculate that the mobility of the Leu-531 side chain increases the volume available at the opening of the cyclooxygenase channel and contributes to the observed ability of COX-2 to oxygenate a broad spectrum of fatty acid and fatty ester substrates.


Journal of Biological Chemistry | 2011

Human Cyclooxygenase-2 Is a Sequence Homodimer That Functions as a Conformational Heterodimer

Liang Dong; Alex J. Vecchio; Narayan P. Sharma; Brice J. Jurban; Michael G. Malkowski; William L. Smith

Prostaglandin endoperoxide H synthases 1 and 2, also known as cyclooxygenases (COXs) 1 and 2, convert arachidonic acid (AA) to prostaglandin endoperoxide H2. Prostaglandin endoperoxide H synthases are targets of nonspecific nonsteroidal anti-inflammatory drugs and COX-2-specific inhibitors called coxibs. PGHS-2 is a sequence homodimer. Each monomer has a peroxidase and a COX active site. We find that human PGHS-2 functions as a conformational heterodimer having a catalytic monomer (Ecat) and an allosteric monomer (Eallo). Heme binds tightly only to the peroxidase site of Ecat, whereas substrates, as well as certain inhibitors (e.g. celecoxib), bind the COX site of Ecat. Ecat is regulated by Eallo in a manner dependent on what ligand is bound to Eallo. Substrate and nonsubstrate fatty acids (FAs) and some COX inhibitors (e.g. naproxen) preferentially bind to the COX site of Eallo. AA can bind to Ecat and Eallo, but the affinity of AA for Eallo is 25 times that for Ecat. Palmitic acid, an efficacious stimulator of human PGHS-2, binds only Eallo in palmitic acid/murine PGHS-2 co-crystals. Nonsubstrate FAs can potentiate or attenuate actions of COX inhibitors depending on the FA and whether the inhibitor binds Ecat or Eallo. Our studies suggest that the concentration and composition of the free FA pool in the environment in which PGHS-2 functions in cells, the FA tone, is a key factor regulating PGHS-2 activity and its responses to COX inhibitors. We suggest that differences in FA tone occurring with different diets will likely affect both base-line prostanoid synthesis and responses to COX inhibitors.


Science | 2013

Structure of the Integral Membrane Protein CAAX Protease Ste24p

Edward E. Pryor; Peter S. Horanyi; Kathleen M. Clark; Nadia Fedoriw; Sara M. Connelly; Mary Koszelak-Rosenblum; Guangyu Zhu; Michael G. Malkowski; Michael C. Wiener; Mark E. Dumont

Lamin Loppers The nuclear lamina provides mechanical stability to the nuclear envelope and is involved in regulation of cellular processes such as DNA replication. Defects in the nuclear lamina lead to diseases such as progeria and metabolic disorders. One of the components of the nuclear lamina, lamin A, undergoes a complex maturation process. A key player is an inner nuclear membrane zinc metalloprotease (ZMP) that is responsible for two proteolysis steps (see the Perspective by Michaelis and Hrycyna). Quigley et al. (p. 1604) report the crystal structure of human ZMPSTE24 and Pryor et al. (p. 1600) that of the yeast homolog Ste24p. The structures provide insight into the mechanism of catalysis and into why mutations in ZMPSTE24 lead to laminopathies. Structures of two transmembrane zinc proteases reveal a barrel of seven helices surrounding a large cavity. [Also see Perspective by Michaelis and Hrycyna] Posttranslational lipidation provides critical modulation of the functions of some proteins. Isoprenoids (i.e., farnesyl or geranylgeranyl groups) are attached to cysteine residues in proteins containing C-terminal CAAX sequence motifs (where A is an aliphatic residue and X is any residue). Isoprenylation is followed by cleavage of the AAX amino acid residues and, in some cases, by additional proteolytic cuts. We determined the crystal structure of the CAAX protease Ste24p, a zinc metalloprotease catalyzing two proteolytic steps in the maturation of yeast mating pheromone a-factor. The Ste24p core structure is a ring of seven transmembrane helices enclosing a voluminous cavity containing the active site and substrate-binding groove. The cavity is accessible to the external milieu by means of gaps between splayed transmembrane helices. We hypothesize that cleavage proceeds by means of a processive mechanism of substrate insertion, translocation, and ejection.


Nature Structural & Molecular Biology | 2013

Coordinating the impact of structural genomics on the human α-helical transmembrane proteome

Ursula Pieper; Avner Schlessinger; Edda Kloppmann; Geoffrey Chang; James J. Chou; Mark E. Dumont; Brian G. Fox; Petra Fromme; Wayne A. Hendrickson; Michael G. Malkowski; Douglas C. Rees; David L. Stokes; Michael H. B. Stowell; Michael C. Wiener; Burkhard Rost; Robert M. Stroud; Raymond C. Stevens; Andrej Sali

Given the recent successes in determining membrane-protein structures, we explore the tractability of determining representatives for the entire human membrane proteome. This proteome contains 2,925 unique integral α-helical transmembrane-domain sequences that cluster into 1,201 families sharing more than 25% sequence identity. Structures of 100 optimally selected targets would increase the fraction of modelable human α-helical transmembrane domains from 26% to 58%, providing structure and function information not otherwise available.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Blocking S-adenosylmethionine synthesis in yeast allows selenomethionine incorporation and multiwavelength anomalous dispersion phasing

Michael G. Malkowski; Erin Quartley; Alan E. Friedman; Julie Babulski; Yoshiko Kon; Jennifer R. Wolfley; Meriem I. Said; Joseph R. Luft; Eric M. Phizicky; George T. DeTitta; Elizabeth J. Grayhack

Saccharomyces cerevisiae is an ideal host from which to obtain high levels of posttranslationally modified eukaryotic proteins for x-ray crystallography. However, extensive replacement of methionine by selenomethionine for anomalous dispersion phasing has proven intractable in yeast. We report a general method to incorporate selenomethionine into proteins expressed in yeast based on manipulation of the appropriate metabolic pathways. sam1− sam2− mutants, in which the conversion of methionine to S-adenosylmethionine is blocked, exhibit reduced selenomethionine toxicity compared with wild-type yeast, increased production of protein during growth in selenomethionine, and efficient replacement of methionine by selenomethionine, based on quantitative mass spectrometry and x-ray crystallography. The structure of yeast tryptophanyl-tRNA synthetase was solved to 1.8 Å by using multiwavelength anomalous dispersion phasing with protein that was expressed and purified from the sam1− sam2− strain grown in selenomethionine. Six of eight selenium residues were located in the structure.


Journal of Biological Chemistry | 2011

The structural basis of endocannabinoid oxygenation by cyclooxygenase-2.

Alex J. Vecchio; Michael G. Malkowski

The cyclooxygenases (COX-1 and COX-2) oxygenate arachidonic acid (AA) in the committed step of prostaglandin biogenesis. Substitutions of I434V, H513R, and I523V constitute the only differences in residues lining the cyclooxygenase channel between COX-1 and COX-2. These changes create a hydrophobic pocket in COX-2, with Arg-513 located at the base of the pocket, which has been exploited in the design of COX-2-selective inhibitors. Previous studies have shown that COX-2, but not COX-1, can oxygenate endocannabinoid substrates, including 2-arachidonoyl glycerol (2-AG). To investigate the isoform-specific structural basis of endocannabinoid binding to COX-2, we determined the crystal structure of the 2-AG isomer 1-arachidonoyl glycerol (1-AG) in complex with wild type and R513H murine (mu) COX-2 to 2.2 and 2.35 Å, respectively, and R513H muCOX-2 in complex with AA to 2.45 Å resolution. The 2,3-dihydroxypropyl moiety of 1-AG binds near the opening of the cyclooxygenase channel in the space vacated by the movement of the Leu-531 side chain, validating our previous hypothesis implicating the flexibility of the Leu-531 side chain as a determinant for the ability of COX-2 to oxygenate endocannabinoid substrates. Functional analyses carried out to compliment our structural findings indicated that Y355F and R513H muCOX-2 constructs had no effect on the oxygenation of 1-AG and 2-AG, whereas substitutions that resulted in a shortened side chain for Leu-531 had only modest effects. Both AA and 1-AG bind to R513H muCOX-2 in conformations similar to those observed in the co-crystal structures of these substrates with wild type enzyme.


Protein Science | 2007

Efficient optimization of crystallization conditions by manipulation of drop volume ratio and temperature

Joseph R. Luft; Jennifer R. Wolfley; Meriem I. Said; Raymond M. Nagel; Angela Lauricella; Jennifer L. Smith; Max Thayer; Christina K. Veatch; Edward H. Snell; Michael G. Malkowski; George T. DeTitta

An efficient optimization method for the crystallization of biological macromolecules has been developed and tested. This builds on a successful high‐throughput technique for the determination of initial crystallization conditions. The optimization method takes an initial condition identified through screening and then varies the concentration of the macromolecule, precipitant, and the growth temperature in a systematic manner. The amount of sample and number of steps is minimized and no biochemical reformulation is required. In the current application a robotic liquid handling system enables high‐throughput use, but the technique can easily be adapted in a nonautomated setting. This method has been applied successfully for the rapid optimization of crystallization conditions in nine representative cases.


Journal of Structural Biology | 2015

The structure of ibuprofen bound to cyclooxygenase-2.

Benjamin J. Orlando; Michael J. Lucido; Michael G. Malkowski

The cyclooxygenases (COX-1 and COX-2) catalyze the rate-limiting step in the biosynthesis of prostaglandins, and are the pharmacological targets of non-steroidal anti-inflammatory drugs (NSAIDs) and COX-2 selective inhibitors (coxibs). Ibuprofen (IBP) is one of the most commonly available over-the-counter pharmaceuticals in the world. The anti-inflammatory and analgesic properties of IBP are thought to arise from inhibition of COX-2 rather than COX-1. While an X-ray crystal structure of IBP bound to COX-1 has been solved, no such structure exists for the cognate isoform COX-2. We have determined the crystal structure of muCOX-2 with a racemic mixture of (R/S)-IBP. Our structure reveals that only the S-isomer of IBP was bound, indicating that the S-isomer possesses higher affinity for COX-2 than the R-isomer. Mutational analysis of Arg-120 and Tyr-355 at the entrance of the cyclooxygenase channel confirmed their role in binding and inhibition of COX-2 by IBP. Our results provide the first atomic level detail of the interaction between IBP and COX-2.


Protein Expression and Purification | 2010

Purification of Transmembrane Proteins from Saccharomyces cerevisiae for X-ray Crystallography

Kathleen M. Clark; Nadia Fedoriw; Katrina Robinson; Sara M. Connelly; Joan Randles; Michael G. Malkowski; George T. DeTitta; Mark E. Dumont

To enhance the quantity and quality of eukaryotic transmembrane proteins (TMPs) available for structure determination by X-ray crystallography, we have optimized protocols for purification of TMPs expressed in the yeast Saccharomyces cerevisiae. We focused on a set of the highest-expressing endogenous yeast TMPs for which there are established biochemical assays. Genes encoding the target TMPs are transferred via ligation-independent cloning to a series of vectors that allow expression of reading frames fused to C-terminal His10 and ZZ (IgG-binding) domains that are separated from the reading frame by a cleavage site for rhinovirus 3C protease. Several TMP targets expressed from these vectors have been purified via affinity chromatography and gel filtration chromatography at levels and purities sufficient for ongoing crystallization trials. Initial purifications were based on expression of the genes under control of a galactose-inducible promoter, but higher cell densities and improved expression have been obtained through use of the yeast ADH2 promoter. Wide variations have been observed in the behavior of different TMP targets during purification; some can be readily purified, while others do not bind efficiently to affinity matrices, are not efficiently cleaved from the matrices, or remain tightly associated with the matrices even after cleavage of the affinity tags. The size, oligomeric state, and composition of purified protein-detergent complexes purified under different conditions were analyzed using a colorimetric assay of detergent concentrations and by analytical size-exclusion chromatography using static light scattering, refractive index, and UV absorption detection to monitor the elution profiles. Effective procedures were developed for obtaining high concentrations of purified TMPs without excessively concentrating detergents.


Protein Science | 2009

Determination and application of empirically derived detergent phase boundaries to effectively crystallize membrane proteins

Mary Koszelak-Rosenblum; Adam Krol; Namrita Mozumdar; Kristin Wunsch; Adam Ferin; Eleanor Cook; Christina K. Veatch; Raymond M. Nagel; Joseph R. Luft; George T. DeTitta; Michael G. Malkowski

Elucidating the structures of membrane proteins is essential to our understanding of disease states and a critical component in the rational design of drugs. Structural characterization of a membrane protein begins with its detergent solubilization from the lipid bilayer and its purification within a functionally stable protein‐detergent complex (PDC). Crystallization of the PDC typically occurs by changing the solution environment to decrease solubility and promote interactions between exposed hydrophilic surface residues. As membrane proteins have been observed to form crystals close to the phase separation boundaries of the detergent used to form the PDC, knowledge of these boundaries under different chemical conditions provides a foundation to rationally design crystallization screens. We have carried out dye‐based detergent phase partitioning studies using different combinations of 10 polyethylene glycols (PEG), 11 salts, and 11 detergents to generate a significant amount of chemically diverse phase boundary data. The resulting curves were used to guide the formulation of a 1536‐cocktail crystallization screen for membrane proteins. We are making both the experimentally derived phase boundary data and the 1536 membrane screen available through the high‐throughput crystallization facility located at the Hauptman‐Woodward Institute. The phase boundary data have been packaged into an interactive Excel spreadsheet that allows investigators to formulate grid screens near a given phase boundary for a particular detergent. The 1536 membrane screen has been applied to 12 membrane proteins of unknown structures supplied by the structural genomics and structural biology communities, with crystallization leads for 10/12 samples and verification of one crystal using X‐ray diffraction.

Collaboration


Dive into the Michael G. Malkowski's collaboration.

Top Co-Authors

Avatar

Mary Koszelak-Rosenblum

Hauptman-Woodward Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guangyu Zhu

Hauptman-Woodward Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy F. Murphy

State University of New York System

View shared research outputs
Researchain Logo
Decentralizing Knowledge