Michael G. Rabbat
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael G. Rabbat.
arXiv: Distributed, Parallel, and Cluster Computing | 2010
Alexandros G. Dimakis; Soummya Kar; José M. F. Moura; Michael G. Rabbat; Anna Scaglione
Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This paper presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.
IEEE Signal Processing Magazine | 2008
Jarvis D. Haupt; Waheed U. Bajwa; Michael G. Rabbat; Robert D. Nowak
This article describes a very different approach to the decentralized compression of networked data. Considering a particularly salient aspect of this struggle that revolves around large-scale distributed sources of data and their storage, transmission, and retrieval. The task of transmitting information from one point to another is a common and well-understood exercise. But the problem of efficiently transmitting or sharing information from and among a vast number of distributed nodes remains a great challenge, primarily because we do not yet have well developed theories and tools for distributed signal processing, communications, and information theory in large-scale networked systems.
IEEE Transactions on Signal Processing | 2008
Tuncer C. Aysal; Mark Coates; Michael G. Rabbat
In this paper, we develop algorithms for distributed computation of averages of the node data over networks with bandwidth/power constraints or large volumes of data. Distributed averaging algorithms fail to achieve consensus when deterministic uniform quantization is adopted. We propose a distributed algorithm in which the nodes utilize probabilistically quantized information, i.e., dithered quantization, to communicate with each other. The algorithm we develop is a dynamical system that generates sequences achieving a consensus at one of the quantization values almost surely. In addition, we show that the expected value of the consensus is equal to the average of the original sensor data. We derive an upper bound on the mean-square-error performance of the probabilistically quantized distributed averaging (PQDA). Moreover, we show that the convergence of the PQDA is monotonic by studying the evolution of the minimum-length interval containing the node values. We reveal that the length of this interval is a monotonically nonincreasing function with limit zero. We also demonstrate that all the node values, in the worst case, converge to the final two quantization bins at the same rate as standard unquantized consensus. Finally, we report the results of simulations conducted to evaluate the behavior and the effectiveness of the proposed algorithm in various scenarios.
information processing in sensor networks | 2006
Michael G. Rabbat; Jarvis D. Haupt; Aarti Singh; Robert D. Nowak
Developing energy efficient strategies for the extraction, transmission, and dissemination of information is a core theme in wireless sensor network research. In this paper we present a novel system for decentralized data compression and predistribution. The system simultaneously computes random projections of the sensor data and disseminates them throughout the network using a simple gossiping algorithm. These summary statistics are stored in an efficient manner and can be extracted from a small subset of nodes anywhere in the network. From these measurements one can reconstruct an accurate approximation of the data at all nodes in the network, provided the original data is compressible in a certain sense which need not be known to the nodes ahead of time. The system provides a practical and universal approach to decentralized compression and content distribution in wireless sensor networks. Two example applications, network health monitoring and field estimation, demonstrate the utility of our method
2007 IEEE/SP 14th Workshop on Statistical Signal Processing | 2007
Tuncer C. Aysal; Mark Coates; Michael G. Rabbat
In this paper, we develop algorithms for distributed computation of averages of the node data over networks with bandwidth/power constraints or large volumes of data. Distributed averaging algorithms fail to achieve consensus when deterministic uniform quantization is adopted. We propose a distributed algorithm in which the nodes utilize probabilistically quantized information to communicate with each other. The algorithm we develop is a dynamical system that generates sequences achieving a consensus, which is one of the quantization values. In addition, we show that the expected value of the consensus is equal to the average of the original sensor data. We report the results of simulations conducted to evaluate the behavior and the effectiveness of the proposed algorithm in various scenarios.
international workshop on signal processing advances in wireless communications | 2005
Michael G. Rabbat; Robert D. Nowak; James A. Bucklew
We study consensus problems in networked systems with unreliable links. Our contributions are two-fold. First, we derive a family of decentralized consensus algorithms for minimizing a sum of convex functions, /spl Sigma//sub i=1//sup N/f/sub i/(x), where each function f/sub i/ only depends on information at one node in the network. Computing the consensus average is a special case in this setting. Then, we construct a modified algorithm which is resilient in situations where the channels between nodes act as binary erasure channels. The flexibility and efficacy of our approach is demonstrated through an application of robust estimation.
conference on decision and control | 2012
Konstantinos I. Tsianos; Sean F. Lawlor; Michael G. Rabbat
Recently there has been a significant amount of research on developing consensus based algorithms for distributed optimization motivated by applications that vary from large scale machine learning to wireless sensor networks. This work describes and proves convergence of a new algorithm called Push-Sum Distributed Dual Averaging which combines a recent optimization algorithm [1] with a push-sum consensus protocol [2]. As we discuss, the use of push-sum has significant advantages. Restricting to doubly stochastic consensus protocols is not required and convergence to the true average consensus is guaranteed without knowing the stationary distribution of the update matrix in advance. Furthermore, the communication semantics of just summing the incoming information make this algorithm truly asynchronous and allow a clean analysis when varying intercommunication intervals and communication delays are modelled. We include experiments in simulation and on a small cluster to complement the theoretical analysis.
international conference on acoustics, speech, and signal processing | 2012
Xiaofan Zhu; Michael G. Rabbat
In this paper, we introduce the concept of smoothness for signals supported on the vertices of a graph. We provide theoretical explanations when and why the Laplacian eigenbasis can be regarded as a meaningful “Fourier” transform of such signals. Moreover, we analyze the desired properties of the underlying graphs for better compressibility of the signals. We verify our theoretical work by experiments on real world data.
distributed computing in sensor systems | 2009
Mohammad A. Kanso; Michael G. Rabbat
Radio Frequency (RF) tomography refers to the process of inferring information about an environment by capturing and analyzing RF signals transmitted between nodes in a wireless sensor network. In the case where few available measurements are available, the inference techniques applied in previous work may not be feasible. Under certain assumptions, compressed sensing techniques can accurately infer environment characteristics even from a small set of measurements. This paper introduces Compressed RF Tomography, an approach that combines RF tomography and compressed sensing for monitoring in a wireless sensor network. We also present decentralized techniques which allow monitoring and data analysis to be performed cooperatively by the nodes. The simplicity of our approach makes it attractive for sensor networks. Experiments with simulated and real data demonstrate the capabilities of the approach in both centralized and decentralized scenarios.
allerton conference on communication, control, and computing | 2012
Konstantinos I. Tsianos; Sean F. Lawlor; Michael G. Rabbat
This paper discusses practical consensus-based distributed optimization algorithms. In consensus-based optimization algorithms, nodes interleave local gradient descent steps with consensus iterations. Gradient steps drive the solution to a minimizer, while the consensus iterations synchronize the values so that all nodes converge to a network-wide optimum when the objective is convex and separable. The consensus update requires communication. If communication is synchronous and nodes wait to receive one message from each of their neighbors before updating then progress is limited by the slowest node. To be robust to failing or stalling nodes, asynchronous communications should be used. Asynchronous protocols using bi-directional communications cause deadlock, and so one-directional protocols are necessary. However, with one-directional asynchronous protocols it is no longer possible to guarantee the consensus matrix is doubly stochastic. At the same time it is essential that the coordination protocol achieve consensus on the average to avoid biasing the optimization objective. We report on experiments running Push-Sum Distributed Dual Averaging for convex optimization in a MPI cluster. The experiments illustrate the benefits of using asynchronous consensus-based distributed optimization when some nodes are unreliable and may fail or when messages experience time-varying delays.