Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael G. Surette is active.

Publication


Featured researches published by Michael G. Surette.


Nature | 1999

Robustness in bacterial chemotaxis

Uri Alon; Michael G. Surette; Naama Barkai; Stanislas Leibler

Networks of interacting proteins orchestrate the responses of living cells to a variety of external stimuli, but how sensitive is the functioning of these protein networks to variations in theirbiochemical parameters? One possibility is that to achieve appropriate function, the reaction rate constants and enzyme concentrations need to be adjusted in a precise manner, and any deviation from these ‘fine-tuned’ values ruins the networks performance. An alternative possibility is that key properties of biochemical networks are robust; that is, they are insensitive to the precise values of the biochemical parameters. Here we address this issue in experiments using chemotaxis of Escherichia coli, one of the best-characterized sensory systems,. We focus on how response and adaptation to attractant signals vary with systematic changes in the intracellular concentration of the components of the chemotaxis network. We find that some properties, such as steady-state behaviour and adaptation time, show strong variations in response to varying protein concentrations. In contrast, the precision of adaptation is robust and does not vary with the protein concentrations. This is consistent with a recently proposed molecular mechanism for exact adaptation, where robustness is a direct consequence of the networks architecture.


Molecular Microbiology | 2001

The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule.

Stephan Schauder; Kevan M. Shokat; Michael G. Surette; Bonnie L. Bassler

Many bacteria control gene expression in response to cell population density, and this phenomenon is called quorum sensing. In Gram‐negative bacteria, quorum sensing typically involves the production, release and detection of acylated homoserine lactone signalling molecules called autoinducers. Vibrio harveyi, a Gram‐negative bioluminescent marine bacterium, regulates light production in response to two distinct autoinducers (AI‐1 and AI‐2). AI‐1 is a homoserine lactone. The structure of AI‐2 is not known. We have suggested previously that V. harveyi uses AI‐1 for intraspecies communication and AI‐2 for interspecies communication. Consistent with this idea, we have shown that many species of Gram‐negative and Gram‐positive bacteria produce AI‐2 and, in every case, production of AI‐2 is dependent on the function encoded by the luxS gene. We show here that LuxS is the AI‐2 synthase and that AI‐2 is produced from S‐adenosylmethionine in three enzymatic steps. The substrate for LuxS is S‐ribosylhomocysteine, which is cleaved to form two products, one of which is homocysteine, and the other is AI‐2. In this report, we also provide evidence that the biosynthetic pathway and biochemical intermediates in AI‐2 biosynthesis are identical in Escherichia coli, Salmonella typhimurium, V. harveyi, Vibrio cholerae and Enterococcus faecalis. This result suggests that, unlike quorum sensing via the family of related homoserine lactone autoinducers, AI‐2 is a unique, ‘universal’ signal that could be used by a variety of bacteria for communication among and between species.


Nature Reviews Microbiology | 2006

Communication in bacteria: an ecological and evolutionary perspective

Laurent Keller; Michael G. Surette

Individual bacteria can alter their behaviour through chemical interactions between organisms in microbial communities ? this is generally referred to as quorum sensing. Frequently, these interactions are interpreted in terms of communication to mediate coordinated, multicellular behaviour. We show that the nature of interactions through quorum-sensing chemicals does not simply involve cooperative signals, but entails other interactions such as cues and chemical manipulations. These signals might have a role in conflicts within and between species. The nature of the chemical interaction is important to take into account when studying why and how bacteria react to the chemical substances that are produced by other bacteria.


Nature Methods | 2006

A comprehensive library of fluorescent transcriptional reporters for Escherichia coli

Alon Zaslaver; Anat Bren; Michal Ronen; Shalev Itzkovitz; Ilya Kikoin; Seagull Shavit; Wolfram Liebermeister; Michael G. Surette; Uri Alon

E. coli is widely used for systems biology research; there exists a need, however, for tools that can be used to accurately and comprehensively measure expression dynamics in individual living cells. To address this we present a library of transcriptional fusions of gfp to each of about 2,000 different promoters in E. coli K12, covering the great majority of the promoters in the organism. Each promoter fusion is expressed from a low-copy plasmid. We demonstrate that this library can be used to obtain highly accurate dynamic measurements of promoter activity on a genomic scale, in a glucose-lactose diauxic shift experiment. The library allowed detection of about 80 previously uncharacterized transcription units in E. coli, including putative internal promoters within previously known operons, such as the lac operon. This library can serve as a tool for accurate, high-resolution analysis of transcription networks in living E. coli cells.


Molecular Microbiology | 2003

Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication

Kangmin Duan; Carol S. Dammel; Jeffrey Stein; Harvey R. Rabin; Michael G. Surette

The change in gene expression patterns in response to host environments is a prerequisite for bacterial infection. Bacterial diseases often occur as an outcome of the complex interactions between pathogens and the host. The indigenous, usually non‐pathogenic microflora is a ubiquitous constituent of the host. In order to understand the interactions between pathogens and the resident microflora and how they affect the gene expression patterns of the pathogens and contribute to bacterial diseases, the interactions between pathogenic Pseudomonas aeruginosa and avirulent oropharyngeal flora (OF) strains isolated from sputum samples of cystic fibrosis (CF) patients were investigated. Animal experiments using a rat lung infection model indicate that the presence of OF bacteria enhanced lung damage caused by P. aeruginosa. Genome‐wide transcriptional analysis with a lux reporter‐based promoter library demonstrated that ≈ 4% of genes in the genome responded to the presence of OF strains using an in vitro system. Characterization of a subset of the regulated genes indicates that they fall into seven functional classes, and large portions of the upregulated genes are genes important for P. aeruginosa pathogenesis. Autoinducer‐2 (AI‐2)‐mediated quorum sensing, a proposed interspecies signalling system, accounted for some, but not all, of the gene regulation. A substantial amount of  AI‐2  was  detected  directly  in  sputum  samples from CF patients and in cultures of most non‐pseudomonad bacteria isolated from the sputa. Transcriptional profiling of a set of defined P. aeruginosa virulence factor promoters revealed that OF and exogenous AI‐2 could upregulate overlapping subsets of these genes. These results suggest important contributions of the host microflora to P. aeruginosa infection by modulating gene expression via interspecies communications.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Detailed map of a cis-regulatory input function

Yaki Setty; Avraham E. Mayo; Michael G. Surette; Uri Alon

Most genes are regulated by multiple transcription factors that bind specific sites in DNA regulatory regions. These cis-regulatory regions perform a computation: the rate of transcription is a function of the active concentrations of each of the input transcription factors. Here, we used accurate gene expression measurements from living cell cultures, bearing GFP reporters, to map in detail the input function of the classic lacZYA operon of Escherichia coli, as a function of about a hundred combinations of its two inducers, cAMP and isopropyl β-d-thiogalactoside (IPTG). We found an unexpectedly intricate function with four plateau levels and four thresholds. This result compares well with a mathematical model of the binding of the regulatory proteins cAMP receptor protein (CRP) and LacI to the lac regulatory region. The model is also used to demonstrate that with few mutations, the same region could encode much purer AND-like or even OR-like functions. This possibility means that the wild-type region is selected to perform an elaborate computation in setting the transcription rate. The present approach can be generally used to map the input functions of other genes.


Molecular Systems Biology | 2007

Programming gene expression with combinatorial promoters.

Robert Sidney Cox; Michael G. Surette; Michael B. Elowitz

Promoters control the expression of genes in response to one or more transcription factors (TFs). The architecture of a promoter is the arrangement and type of binding sites within it. To understand natural genetic circuits and to design promoters for synthetic biology, it is essential to understand the relationship between promoter function and architecture. We constructed a combinatorial library of random promoter architectures. We characterized 288 promoters in Escherichia coli, each containing up to three inputs from four different TFs. The library design allowed for multiple −10 and −35 boxes, and we observed varied promoter strength over five decades. To further analyze the functional repertoire, we defined a representation of promoter function in terms of regulatory range, logic type, and symmetry. Using these results, we identified heuristic rules for programming gene expression with combinatorial promoters.


PLOS Pathogens | 2008

Discerning the Complexity of Community Interactions Using a Drosophila Model of Polymicrobial Infections

Christopher D. Sibley; Kangmin Duan; Carrie D. Fischer; Michael D. Parkins; Douglas G. Storey; Harvey R. Rabin; Michael G. Surette

A number of human infections are characterized by the presence of more than one bacterial species and are defined as polymicrobial diseases. Methods for the analysis of the complex biological interactions in mixed infections with a large number of microorganisms are limited and do not effectively determine the contribution of each bacterial species to the pathogenesis of the polymicrobial community. We have developed a novel Drosophila melanogaster infection model to study microbe–microbe interactions and polymicrobe–host interactions. Using this infection model, we examined the interaction of 40 oropharyngeal isolates with Pseudomonas aeruginosa. We observe three classes of microorganisms, one of which acts synergistically with the principal pathogen, while being avirulent or even beneficial on its own. This synergy involves microbe–microbe interactions that result in the modulation of P. aeruginosa virulence factor gene expression within infected Drosophila. The host innate immune response to these natural-route polymicrobial infections is complex and characterized by additive, suppressive, and synergistic transcriptional activation of antimicrobial peptide genes. The polymicrobial infection model was used to differentiate the bacterial flora in cystic fibrosis (CF) sputum, revealing that a large proportion of the organisms in CF airways has the ability to influence the outcome of an infection when in combination with the principal CF pathogen P. aeruginosa.


Molecular Microbiology | 1999

Regulation of autoinducer production in Salmonella typhimurium

Michael G. Surette; Bonnie L. Bassler

Salmonella typhimurium strain LT2 secretes an organic signalling molecule that can be assayed by its ability to activate one of two specific quorum‐sensing systems in Vibrio harveyi. Maximal activity is produced during mid‐ to late exponential phase when S. typhimurium is grown in the presence of glucose or other preferred carbohydrates. The signal is degraded by the onset of stationary phase or when the carbohydrate is depleted from the medium. Presumably, quorum sensing in S. typhimurium is operational during periods of rapid, nutrient‐rich growth. Protein synthesis is required for degradation of the activity, suggesting that a complex regulatory circuitry controls signal production and detection in S. typhimurium. Increased signalling activity is observed if, after growth in the presence of glucose, S. typhimurium is transferred to a high‐osmolarity (0.4 M NaCl) or to a low‐pH (pH 5.0) environment. Degradation of the signal is induced by conditions of low osmolarity (0.1 M NaCl). High osmolarity and low pH are two conditions encountered by S. typhimurium cells when they undergo the transition to a pathogenic existence inside a host organism, suggesting that quorum sensing may have a role in the regulation of virulence in S. typhimurium.


The EMBO Journal | 1998

Response regulator output in bacterial chemotaxis

Uri Alon; Laura Camarena; Michael G. Surette; Blaise Agüera y Arcas; Yi Liu; Stanislas Leibler; Jeffry B. Stock

Chemotaxis responses in Escherichia coli are mediated by the phosphorylated response‐regulator protein P‐CheY. Biochemical and genetic studies have established the mechanisms by which the various components of the chemotaxis system, the membrane receptors and Che proteins function to modulate levels of CheY phosphorylation. Detailed models have been formulated to explain chemotaxis sensing in quantitative terms; however, the models cannot be adequately tested without knowledge of the quantitative relationship between P‐CheY and bacterial swimming behavior. A computerized image analysis system was developed to collect extensive statistics on freeswimming and individual tethered cells. P‐CheY levels were systematically varied by controlled expression of CheY in an E.coli strain lacking the CheY phosphatase, CheZ, and the receptor demethylating enzyme CheB. Tumbling frequency was found to vary with P‐CheY concentration in a weakly sigmoidal fashion (apparent Hill coefficient ∼2.5). This indicates that the high sensitivity of the chemotaxis system is not derived from highly cooperative interactions between P‐CheY and the flagellar motor, but rather depends on nonlinear effects within the chemotaxis signal transduction network. The complex relationship between single flagella rotation and free‐swimming behavior was examined; our results indicate that there is an additional level of information processing associated with interactions between the individual flagella. An allosteric model of the motor switching process is proposed which gives a good fit to the observed switching induced by P‐CheY. Thus the level of intracellular P‐CheY can be estimated from behavior determinations: ∼30% of the intracellular pool of CheY appears to be phosphorylated in fully adapted wild‐type cells.

Collaboration


Dive into the Michael G. Surette's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kangmin Duan

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uri Alon

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian Davies

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge