Michael Gartside
QIMR Berghofer Medical Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Gartside.
Nature | 2011
Satoru Yokoyama; Susan L. Woods; Glen M. Boyle; Lauren G. Aoude; Stuart Macgregor; Victoria Zismann; Michael Gartside; Anne E. Cust; Rizwan Haq; Mark Harland; John C. Taylor; David L. Duffy; Kelly Holohan; Ken Dutton-Regester; Jane M. Palmer; Vanessa F. Bonazzi; Mitchell S. Stark; Judith Symmons; Matthew H. Law; Christopher W. Schmidt; Cathy Lanagan; Linda O’Connor; Elizabeth A. Holland; Helen Schmid; Judith A. Maskiell; Jodie Jetann; Megan Ferguson; Mark A. Jenkins; Richard F. Kefford; Graham G. Giles
So far, two genes associated with familial melanoma have been identified, accounting for a minority of genetic risk in families. Mutations in CDKN2A account for approximately 40% of familial cases, and predisposing mutations in CDK4 have been reported in a very small number of melanoma kindreds. Here we report the whole-genome sequencing of probands from several melanoma families, which we performed in order to identify other genes associated with familial melanoma. We identify one individual carrying a novel germline variant (coding DNA sequence c.G1075A; protein sequence p.E318K; rs149617956) in the melanoma-lineage-specific oncogene microphthalmia-associated transcription factor (MITF). Although the variant co-segregated with melanoma in some but not all cases in the family, linkage analysis of 31 families subsequently identified to carry the variant generated a log of odds (lod) score of 2.7 under a dominant model, indicating E318K as a possible intermediate risk variant. Consistent with this, the E318K variant was significantly associated with melanoma in a large Australian case–control sample. Likewise, it was similarly associated in an independent case–control sample from the United Kingdom. In the Australian sample, the variant allele was significantly over-represented in cases with a family history of melanoma, multiple primary melanomas, or both. The variant allele was also associated with increased naevus count and non-blue eye colour. Functional analysis of E318K showed that MITF encoded by the variant allele had impaired sumoylation and differentially regulated several MITF targets. These data indicate that MITF is a melanoma-predisposition gene and highlight the utility of whole-genome sequencing to identify novel rare variants associated with disease susceptibility.
Oncogene | 2007
Pamela M. Pollock; Michael Gartside; L. Dejeza; Matthew A. Powell; Mary Ann Mallon; Helen Davies; Moosa Mohammadi; Phillip Andrew Futreal; Michael R. Stratton; Jeffrey M. Trent; Paul J. Goodfellow
Endometrial carcinoma is the most common gynecological malignancy in the United States. Although most women present with early disease confined to the uterus, the majority of persistent or recurrent tumors are refractory to current chemotherapies. We have identified a total of 11 different FGFR2 mutations in 3/10 (30%) of endometrial cell lines and 19/187 (10%) of primary uterine tumors. Mutations were seen primarily in tumors of the endometrioid histologic subtype (18/115 cases investigated, 16%). The majority of the somatic mutations identified were identical to germline activating mutations in FGFR2 and FGFR3 that cause Apert Syndrome, Beare–Stevenson Syndrome, hypochondroplasia, achondroplasia and SADDAN syndrome. The two most common somatic mutations identified were S252W (in eight tumors) and N550K (in five samples). Four novel mutations were identified, three of which are also likely to result in receptor gain-of-function. Extensive functional analyses have already been performed on many of these mutations, demonstrating they result in receptor activation through a variety of mechanisms. The discovery of activating FGFR2 mutations in endometrial carcinoma raises the possibility of employing anti-FGFR molecularly targeted therapies in patients with advanced or recurrent endometrial carcinoma.
Nature Genetics | 2014
Carla Daniela Robles-Espinoza; Mark Harland; Andrew J. Ramsay; Lauren G. Aoude; Zhihao Ding; Karen A. Pooley; Antonia L. Pritchard; Jessamy Tiffen; Mia Petljak; Jane M. Palmer; Judith Symmons; Peter Johansson; Mitchell S. Stark; Michael Gartside; Helen Snowden; Grant W. Montgomery; Nicholas G. Martin; Jimmy Z. Liu; Jiyeon Choi; Matthew Makowski; Kevin M. Brown; Alison M. Dunning; Thomas M. Keane; Carlos López-Otín; Nelleke A. Gruis; Nicholas K. Hayward; D. Timothy Bishop; Julia Newton-Bishop; David J. Adams
Deleterious germline variants in CDKN2A account for around 40% of familial melanoma cases, and rare variants in CDK4, BRCA2, BAP1 and the promoter of TERT have also been linked to the disease. Here we set out to identify new high-penetrance susceptibility genes by sequencing 184 melanoma cases from 105 pedigrees recruited in the UK, The Netherlands and Australia that were negative for variants in known predisposition genes. We identified families where melanoma cosegregates with loss-of-function variants in the protection of telomeres 1 gene (POT1), with a proportion of family members presenting with an early age of onset and multiple primary tumors. We show that these variants either affect POT1 mRNA splicing or alter key residues in the highly conserved oligonucleotide/oligosaccharide-binding (OB) domains of POT1, disrupting protein-telomere binding and leading to increased telomere length. These findings suggest that POT1 variants predispose to melanoma formation via a direct effect on telomeres.
Cancer Research | 2008
Sara A. Byron; Michael Gartside; Candice L. Wellens; Mary Ann Mallon; Jack Keenan; Matthew A. Powell; Paul J. Goodfellow; Pamela M. Pollock
KRAS activation and PTEN inactivation are frequent events in endometrial tumorigenesis, occurring in 10% to 30% and 26% to 80% of endometrial cancers, respectively. Because we have recently shown activating mutations in fibroblast growth factor receptor 2 (FGFR2) in 16% of endometrioid endometrial cancers, we sought to determine the genetic context in which FGFR2 mutations occur. Analysis of 116 primary endometrioid endometrial cancers revealed that FGFR2 and KRAS mutations were mutually exclusive, whereas FGFR2 mutations were seen concomitantly with PTEN mutations. Here, we show that shRNA knockdown of FGFR2 or treatment with a pan-FGFR inhibitor, PD173074, resulted in cell cycle arrest and induction of cell death in endometrial cancer cells with activating mutations in FGFR2. This cell death in response to FGFR2 inhibition occurred within the context of loss-of-function mutations in PTEN and constitutive AKT phosphorylation, and was associated with a marked reduction in extracellular signal-regulated kinase 1/2 activation. Together, these data suggest that inhibition of FGFR2 may be a viable therapeutic option in endometrial tumors possessing activating mutations in FGFR2, despite the frequent abrogation of PTEN in this cancer type.
Journal of Biological Chemistry | 2000
Jodi Clyde-Smith; Gint Silins; Michael Gartside; Sean M. Grimmond; Maria Etheridge; Ann Apolloni; Nicholas K. Hayward; John F. Hancock
Ras proteins operate as molecular switches in signal transduction pathways downstream of tyrosine kinases and G-protein-coupled receptors. Ras is switched from the inactive GDP-bound state to the active GTP-bound state by guanine nucleotide exchange factors (GEFs). We report here the cloning and characterization of RasGRP2, a longer alternatively spliced form of the recently cloned RapGEF, CalDAG-GEFI. A unique feature of RasGRP2 is that it is targeted to the plasma membrane by a combination of N-terminal myristoylation and palmitoylation. In vivo, RasGRP2 selectively catalyzes nucleotide exchange on N- and Ki-Ras, but not Ha-Ras. RasGRP2 also catalyzes nucleotide exchange on Rap1, but this RapGEF activity is less potent than that associated with CalDAG-GEFI. The nucleotide exchange activity of RasGRP2 toward N-Ras is stimulated by diacylglycerol and inhibited by calcium. The effects of diacylglycerol and calcium are additive but are not accompanied by any detectable change in the subcellular localization of RasGRP2. In contrast, CalDAG-GEFI is localized predominantly to the cytosol and lacks Ras exchange activity in vivo. However, prolonged exposure to phorbol esters, or growth in serum, results in localization of CalDAG-GEFI to the cell membrane and restoration of Ras exchange activity. Expression of RasGRP2 or CalDAG-GEFI in NIH3T3 cells transfected with wild type N-Ras results in an accelerated growth rate but not morphologic transformation. Thus, under appropriate growth conditions, CalDAG-GEFI and RasGRP2 are dual specificity Ras and Rap exchange factors.
Molecular and Cellular Biology | 2004
Christine Biondi; Michael Gartside; Paul Waring; Kelly A. Loffler; Mitchell S. Stark; Mark A. Magnuson; Graham F. Kay; Nicholas K. Hayward
ABSTRACT Mutations of the MEN1 gene, encoding the tumor suppressor menin, predispose individuals to the cancer syndrome multiple endocrine neoplasia type 1, characterized by the development of tumors of the endocrine pancreas and anterior pituitary and parathyroid glands. We have targeted the murine Men1 gene by using Cre recombinase-loxP technology to develop both total and tissue-specific knockouts of the gene. Conditional homozygous inactivation of the Men1 gene in the pituitary gland and endocrine pancreas bypasses the embryonic lethality associated with a constitutional Men1 −/− genotype and leads to β-cell hyperplasia in less than 4 months and insulinomas and prolactinomas starting at 9 months. The pituitary gland and pancreas develop normally in the conditional absence of menin, but loss of this transcriptional cofactor is sufficient to cause β-cell hyperplasia in some islets; however, such loss is not sufficient to initiate pituitary gland tumorigenesis, suggesting that additional genetic events are necessary for the latter.
PLOS ONE | 2012
Sara A. Byron; Michael Gartside; Matthew A. Powell; Candice L. Wellens; Feng Gao; David G. Mutch; Paul J. Goodfellow; Pamela M. Pollock
Mutations in multiple oncogenes including KRAS, CTNNB1, PIK3CA and FGFR2 have been identified in endometrial cancer. The aim of this study was to provide insight into the clinicopathological features associated with patterns of mutation in these genes, a necessary step in planning targeted therapies for endometrial cancer. 466 endometrioid endometrial tumors were tested for mutations in FGFR2, KRAS, CTNNB1, and PIK3CA. The relationships between mutation status, tumor microsatellite instability (MSI) and clinicopathological features including overall survival (OS) and disease-free survival (DFS) were evaluated using Kaplan-Meier survival analysis and Cox proportional hazard models. Mutations were identified in FGFR2 (48/466); KRAS (87/464); CTNNB1 (88/454) and PIK3CA (104/464). KRAS and FGFR2 mutations were significantly more common, and CTNNB1 mutations less common, in MSI positive tumors. KRAS and FGFR2 occurred in a near mutually exclusive pattern (p = 0.05) and, surprisingly, mutations in KRAS and CTNNB1 also occurred in a near mutually exclusive pattern (p = 0.0002). Multivariate analysis revealed that mutation in KRAS and FGFR2 showed a trend (p = 0.06) towards longer and shorter DFS, respectively. In the 386 patients with early stage disease (stage I and II), FGFR2 mutation was significantly associated with shorter DFS (HR = 3.24; 95% confidence interval, CI, 1.35–7.77; p = 0.008) and OS (HR = 2.00; 95% CI 1.09–3.65; p = 0.025) and KRAS was associated with longer DFS (HR = 0.23; 95% CI 0.05–0.97; p = 0.045). In conclusion, although KRAS and FGFR2 mutations share similar activation of the MAPK pathway, our data suggest very different roles in tumor biology. This has implications for the implementation of anti-FGFR or anti-MEK biologic therapies.
Molecular Cancer Research | 2009
Michael Gartside; Huaibin Chen; Omar A. Ibrahimi; Sara A. Byron; Amy Curtis; Candice L. Wellens; Ana Bengston; Laura M. Yudt; Anna V. Eliseenkova; Jinghong Ma; John A. Curtin; Pilar Hyder; Ursula Harper; Erica Riedesel; Graham J. Mann; Jeffrey M. Trent; Boris C. Bastian; Paul S. Meltzer; Moosa Mohammadi; Pamela M. Pollock
We report that 10% of melanoma tumors and cell lines harbor mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. These novel mutations include three truncating mutations and 20 missense mutations occurring at evolutionary conserved residues in FGFR2 as well as among all four FGFRs. The mutation spectrum is characteristic of those induced by UV radiation. Mapping of these mutations onto the known crystal structures of FGFR2 followed by in vitro and in vivo studies show that these mutations result in receptor loss of function through several distinct mechanisms, including loss of ligand binding affinity, impaired receptor dimerization, destabilization of the extracellular domains, and reduced kinase activity. To our knowledge, this is the first demonstration of loss-of-function mutations in a class IV receptor tyrosine kinase in cancer. Taken into account with our recent discovery of activating FGFR2 mutations in endometrial cancer, we suggest that FGFR2 may join the list of genes that play context-dependent opposing roles in cancer. (Mol Cancer Res 2009;7(1):41–54)
International Journal of Cancer | 2007
Kelly A. Loffler; Christine Biondi; Michael Gartside; Paul Waring; Mitchell S. Stark; Magdalena Serewko-Auret; H. Konrad Muller; Nicholas K. Hayward; Graham F. Kay
Multiple endocrine neoplasia type 1 (MEN1) is an inherited cancer predisposition syndrome typified by development of tumors in parathyroid, pituitary and endocrine pancreas, as well as less common sites including both endocrine and nonendocrine organs. Deletion or mutation of the tumor suppressor gene MEN1 on chromosome 11 has been identified in many cases of MEN1 as well as in sporadic tumors. The molecular biology of menin, the protein encoded by MEN1, remains poorly understood. Here we describe a mouse model of MEN1 in which tumors were seen in pancreatic islets, pituitary, thyroid and parathyroid, adrenal glands, testes and ovaries. The observed tumor spectrum therefore includes types commonly seen in MEN1 patients and additional types. Pancreatic pathology was most common, evident in over 80% of animals, while other tumor types developed with lower frequency and generally later onset. Tumors of multiple endocrine organs were observed frequently, but progression to carcinoma and metastasis were not evident. Tumors in all sites showed loss of heterozygosity at the Men1 locus, though the frequency in testicular tumors was only 36%, indicating that a different molecular mechanism of tumorigenesis occurs in those Leydig tumors that do not show loss of the normal Men1 allele. Menin expression was below the level of detection in ovary, thyroid and testis, but loss of nuclear menin immunoreactivity was observed uniformly in all pancreatic islet adenomas and in some hyperplastic islet cells, suggesting that complete loss of Men1 is a critical point in islet tumor progression in this model.
Gynecologic Oncology | 2010
Sara A. Byron; Michael Gartside; Candice L. Wellens; Paul J. Goodfellow; Michael J. Birrer; Ian G. Campbell; Pamela M. Pollock
OBJECTIVE Ovarian cancer is the leading cause of death from gynecologic malignancies in the Western world. Fibroblast growth factor receptor (FGFR) signaling has been implicated to play a role in ovarian tumorigenesis. Mutational activation of one member of this receptor family, FGFR2, is a frequent event in endometrioid endometrial cancer. Given the similarities in the histologic and molecular genetics of ovarian and endometrial cancers, we hypothesized that activating FGFR2 mutations may occur in a subset of endometrioid ovarian tumors, and possibly other histotypes. METHODS Six FGFR2 exons were sequenced in 120 primary ovarian tumors representing the major histologic subtypes. RESULTS FGFR2 mutation was detected at low frequency in endometrioid (1/46, 2.2%) and serous (1/41, 2.4%) ovarian cancer. No mutations were detected in clear cell, mucinous, or mixed histology tumors or in the ovarian cancer cell lines tested. Functional characterization of the FGFR2 mutations confirmed that the mutations detected in ovarian cancer result in receptor activation. CONCLUSIONS Despite the low incidence of FGFR2 mutations in ovarian cancer, the two FGFR2 mutations identified in ovarian tumors (S252W, Y376C) overlap with the oncogenic mutations previously identified in endometrial tumors, suggesting activated FGFR2 may contribute to ovarian cancer pathogenesis in a small subset of ovarian tumors.