Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Guilhaus is active.

Publication


Featured researches published by Michael Guilhaus.


Journal of Biological Chemistry | 2005

Characterization of the Role of the Rab GTPase-activating Protein AS160 in Insulin-regulated GLUT4 Trafficking

Mark Larance; Georg Ramm; Jacqueline Stöckli; Ellen M. van Dam; Stephanie Winata; Valerie C. Wasinger; Fiona Simpson; Michael W. Graham; Jagath R. Junutula; Michael Guilhaus; David E. James

Insulin stimulates the translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane. In the present study we have conducted a comprehensive proteomic analysis of affinity-purified GLUT4 vesicles from 3T3-L1 adipocytes to discover potential regulators of GLUT4 trafficking. In addition to previously identified components of GLUT4 storage vesicles including the insulin-regulated aminopeptidase insulin-regulated aminopeptidase and the vesicle soluble N-ethylmaleimide factor attachment protein (v-SNARE) VAMP2, we have identified three new Rab proteins, Rab10, Rab11, and Rab14, on GLUT4 vesicles. We have also found that the putative Rab GTPase-activating protein AS160 (Akt substrate of 160 kDa) is associated with GLUT4 vesicles in the basal state and dissociates in response to insulin. This association is likely to be mediated by the cytosolic tail of insulin-regulated aminopeptidase, which interacted both in vitro and in vivo with AS160. Consistent with an inhibitory role of AS160 in the basal state, reduced expression of AS160 in adipocytes using short hairpin RNA increased plasma membrane levels of GLUT4 in an insulin-independent manner. These findings support an important role for AS160 in the insulin regulated trafficking of GLUT4.


Mass Spectrometry Reviews | 2000

Orthogonal acceleration time‐of‐flight mass spectrometry

Michael Guilhaus; David S. Selby; V. Mlynski

The principles and applications of time-of-flight mass spectrometry involving instruments with independent (orthogonal) axes for ion generation and mass analysis are reviewed. This approach, generally referred to as orthogonal acceleration time-of-flight mass spectrometry, has proved particularly advantageous for the combination of continuous ionization sources with time-of-flight mass spectrometry. The history of the technique is briefly discussed along with the instrumental principles pertaining to all the stages of the instrumentation from ion source to detector. The applications of commercial and customized instruments are discussed for several ionization methods including electrospray, matrix assisted laser desorption/ionization, electron ionization, and plasma ionization.


Journal of Biological Chemistry | 2006

A Role for 14-3-3 in Insulin-stimulated GLUT4 Translocation through Its Interaction with the RabGAP AS160

Georg Ramm; Mark Larance; Michael Guilhaus; David E. James

Translocation of the insulin-regulated glucose transporter GLUT4 to the cell surface is dependent on the phosphatidylinositol 3-kinase/Akt pathway. The RabGAP (Rab GTPase-activating protein) AS160 (Akt substrate of 160 kDa) is a direct substrate of Akt and plays an essential role in the regulation of GLUT4 trafficking. We have used liquid chromatography tandem mass spectrometry to identify several 14-3-3 isoforms as AS160-interacting proteins. 14-3-3 proteins interact with AS160 in an insulin- and Akt-dependent manner via an Akt phosphorylation site, Thr-642. This correlates with the dominant negative effect of both the AS160T642A and the AS1604P mutants on insulin-stimulated GLUT4 translocation. Introduction of a constitutive 14-3-3 binding site into AS1604P restored 14-3-3 binding without disrupting AS160-IRAP (insulin-responsive amino peptidase) interaction and reversed the inhibitory effect of AS1604P on GLUT4 translocation. These data show that the insulin-dependent association of 14-3-3 with AS160 plays an important role in GLUT4 trafficking in adipocytes.


Molecular Microbiology | 2004

A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii

Amber Goodchild; Neil F. W. Saunders; Haluk Ertan; Mark J. Raftery; Michael Guilhaus; Paul M. G. Curmi; Ricardo Cavicchioli

A global view of the biology of the cold‐adapted archaeon Methanococcoides burtonii was achieved using proteomics. Proteins specific to growth at 4°C versus Topt (23°C) were identified by mass spectrometry using the draft genome sequence of M. burtonii. mRNA levels were determined for all genes identified by proteomics, and specific enzyme assays confirmed the protein expression results. Key aspects of cold adaptation related to transcription, protein folding and metabolism, including specific roles for RNA polymerase subunit E, a response regulator and peptidyl prolyl cis/trans isomerase. Heat shock protein DnaK was expressed during growth at Topt, indicating that growth at ‘optimal’ temperatures was stressful for this cold‐adapted organism. Expression of trimethylamine methyltransferase involves contiguous translation of two open reading frames, which is likely to result from incorporation of pyrrolysine at an amber stop codon. Thermal regulation in M. burtonii is achieved through complex gene expression events involving gene clusters and operons, through to protein modifications.


Cell Metabolism | 2008

CaMKII-Mediated Phosphorylation of the Myosin Motor Myo1c Is Required for Insulin-Stimulated GLUT4 Translocation in Adipocytes

Ming Fai Yip; Georg Ramm; Mark Larance; Kyle L. Hoehn; Mark C. Wagner; Michael Guilhaus; David E. James

The unconventional myosin Myo1c has been implicated in insulin-regulated GLUT4 translocation to the plasma membrane in adipocytes. We show that Myo1c undergoes insulin-dependent phosphorylation at S701. Phosphorylation was accompanied by enhanced 14-3-3 binding and reduced calmodulin binding. Recombinant CaMKII phosphorylated Myo1c in vitro and siRNA knockdown of CaMKIIdelta abolished insulin-dependent Myo1c phosphorylation in vivo. CaMKII activity was increased upon insulin treatment and the CaMKII inhibitors CN21 and KN-62 or the Ca(2+) chelator BAPTA-AM blocked insulin-dependent Myo1c phosphorylation and insulin-stimulated glucose transport in adipocytes. Myo1c ATPase activity was increased after CaMKII phosphorylation in vitro and after insulin stimulation of CHO/IR/IRS-1 cells. Expression of wild-type Myo1c, but not S701A or ATPase dead mutant K111A, rescued the inhibition of GLUT4 translocation by siRNA-mediated Myo1c knockdown. These data suggest that insulin regulates Myo1c function via CaMKII-dependent phosphorylation, and these events play a role in insulin-regulated GLUT4 trafficking in adipocytes likely involving Myo1c motor activity.


Analytical Chemistry | 2008

Quantitative LC-MS of polymers: Determining accurate molecular weight distributions by combined size exclusion chromatography and electrospray mass spectrometry with maximum entropy data processing

Till Gruendling; Michael Guilhaus; Christopher Barner-Kowollik

We report on the successful application of size exclusion chromatography (SEC) combined with electrospray ionization mass spectrometry (ESI-MS) and refractive index (RI) detection for the determination of accurate molecular weight distributions of synthetic polymers, corrected for chromatographic band broadening. The presented method makes use of the ability of ESI-MS to accurately depict the peak profiles and retention volumes of individual oligomers eluting from the SEC column, whereas quantitative information on the absolute concentration of oligomers is obtained from the RI-detector only. A sophisticated computational algorithm based on the maximum entropy principle is used to process the data gained by both detectors, yielding an accurate molecular weight distribution, corrected for chromatographic band broadening. Poly(methyl methacrylate) standards with molecular weights up to 10 kDa serve as model compounds. Molecular weight distributions (MWDs) obtained by the maximum entropy procedure are compared to MWDs, which were calculated by a conventional calibration of the SEC-retention time axis with peak retention data obtained from the mass spectrometer. Comparison showed that for the employed chromatographic system, distributions below 7 kDa were only weakly influenced by chromatographic band broadening. However, the maximum entropy algorithm could successfully correct the MWD of a 10 kDa standard for band broadening effects. Molecular weight averages were between 5 and 14% lower than the manufacturer stated data obtained by classical means of calibration. The presented method demonstrates a consistent approach for analyzing data obtained by coupling mass spectrometric detectors and concentration sensitive detectors to polymer liquid chromatography.


Molecular & Cellular Proteomics | 2009

Normalization and Statistical Analysis of Quantitative Proteomics Data Generated by Metabolic Labeling

Lily Ting; Mark J. Cowley; Seah Lay Hoon; Michael Guilhaus; Mark J. Raftery; Ricardo Cavicchioli

Comparative proteomics is a powerful analytical method for learning about the responses of biological systems to changes in growth parameters. To make confident inferences about biological responses, proteomics approaches must incorporate appropriate statistical measures of quantitative data. In the present work we applied microarray-based normalization and statistical analysis (significance testing) methods to analyze quantitative proteomics data generated from the metabolic labeling of a marine bacterium (Sphingopyxis alaskensis). Quantitative data were generated for 1,172 proteins, representing 1,736 high confidence protein identifications (54% genome coverage). To test approaches for normalization, cells were grown at a single temperature, metabolically labeled with 14N or 15N, and combined in different ratios to give an artificially skewed data set. Inspection of ratio versus average (MA) plots determined that a fixed value median normalization was most suitable for the data. To determine an appropriate statistical method for assessing differential abundance, a -fold change approach, Students t test, unmoderated t test, and empirical Bayes moderated t test were applied to proteomics data from cells grown at two temperatures. Inverse metabolic labeling was used with multiple technical and biological replicates, and proteomics was performed on cells that were combined based on equal optical density of cultures (providing skewed data) or on cell extracts that were combined to give equal amounts of protein (no skew). To account for arbitrarily complex experiment-specific parameters, a linear modeling approach was used to analyze the data using the limma package in R/Bioconductor. A high quality list of statistically significant differentially abundant proteins was obtained by using lowess normalization (after inspection of MA plots) and applying the empirical Bayes moderated t test. The approach also effectively controlled for the number of false discoveries and corrected for the multiple testing problem using the Storey-Tibshirani false discovery rate (Storey, J. D., and Tibshirani, R. (2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U.S.A. 100, 9440–9445). The approach we have developed is generally applicable to quantitative proteomics analyses of diverse biological systems.


Environmental Microbiology | 2010

Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics

Lily Ting; Timothy J. Williams; Mark J. Cowley; Federico M. Lauro; Michael Guilhaus; Mark J. Raftery; Ricardo Cavicchioli

The cold marine environment constitutes a large proportion of the Earths biosphere. Sphingopyxis alaskensis was isolated as a numerically abundant bacterium from several cold marine locations, and has been extensively studied as a model marine bacterium. Recently, a metabolic labelling platform was developed to comprehensively identify and quantify proteins from S. alaskensis. The approach incorporated data normalization and statistical validation for the purpose of generating highly confident quantitative proteomics data. Using this approach, we determined quantitative differences between cells grown at 10°C (low temperature) and 30°C (high temperature). Cold adaptation was linked to specific aspects of gene expression: a dedicated protein-folding system using GroESL, DnaK, DnaJ, GrpE, SecB, ClpB and PPIase; polyhydroxyalkanoate-associated storage materials; a link between enzymes in fatty acid metabolism and energy generation; de novo synthesis of polyunsaturated fatty acids in the membrane and cell wall; inorganic phosphate ion transport by a phosphate import PstB homologue; TonB-dependent receptor and bacterioferritin in iron homeostasis; histidine, tryptophan and proline amino acid metabolism; and a large number of proteins without annotated functions. This study provides a new level of understanding on how important marine bacteria can adapt to compete effectively in cold marine environments. This study is also a benchmark for comparative proteomic analyses with other important marine bacteria and other cold-adapted organisms.


Proteomics | 2010

Aβ and human amylin share a common toxicity pathway via mitochondrial dysfunction

Yun-An Lim; Virginie Rhein; Ginette Baysang; Fides Meier; Anne Poljak; Mark J. Raftery; Michael Guilhaus; Lars M. Ittner; Anne Eckert; Jürgen Götz

Alzheimers disease (AD) and type 2 diabetes mellitus (T2DM) are leading causes of morbidity and mortality in the elderly. Both diseases are characterized by amyloid deposition in target tissues: aggregation of amylin in T2DM is associated with loss of insulin‐secreting β‐cells, while amyloid β (Aβ) aggregation in AD brain is associated with neuronal loss. Here, we used quantitative iTRAQ proteomics as a discovery tool to show that both Aβ and human amylin (HA) deregulate identical proteins, a quarter of which are mitochondrial, supporting the notion that mitochondrial dysfunction is a common target in these two amyloidoses. A functional validation revealed that mitochondrial complex IV activity was significantly reduced after treatment with either HA or Aβ, as was mitochondrial respiration. In comparison, complex I activity was reduced only after treatment with HA. Aβ and HA, but not the non‐amyloidogenic rat amylin, induced significant increases in the generation of ROS. Co‐incubation of HA and Aβ did not produce an augmented effect in ROS production, again suggesting common toxicity mechanisms. In conclusion, our data suggest that Aβ and HA both exert toxicity, at least in part, via mitochondrial dysfunction, thus restoring their function may be beneficial for both AD and T2DM.


Diabetes | 2010

Intrinsic depot-specific differences in the secretome of adipose tissue, preadipocytes and adipose tissue derived microvascular endothelial cells

Samantha L. Hocking; Lindsay E. Wu; Michael Guilhaus; Donald J. Chisholm; David E. James

OBJECTIVE Visceral adipose tissue (VAT) is more closely linked to insulin resistance than subcutaneous adipose tissue (SAT). We conducted a quantitative analysis of the secretomes of VAT and SAT to identify differences in adipokine secretion that account for the adverse metabolic consequences of VAT. RESEARCH DESIGN AND METHODS We used lectin affinity chromatography followed by comparison of isotope-labeled amino acid incorporation rates to quantitate relative differences in the secretomes of VAT and SAT explants. Because adipose tissue is composed of multiple cell types, which may contribute to depot-specific differences in secretion, we isolated preadipocytes and microvascular endothelial cells (MVECs) and compared their secretomes to those from whole adipose tissue. RESULTS Although there were no discrete depot-specific differences in the secretomes from whole adipose tissue, preadipocytes, or MVECS, VAT exhibited an overall higher level of protein secretion than SAT. More proteins were secreted in twofold greater abundance from VAT explants compared with SAT explants (59% versus 21%), preadipocytes (68% versus 0%), and MVECs (62% versus 15%). The number of proteins in the whole adipose tissue secretome was greater than the sum of its cellular constituents. Finally, almost 50% of the adipose tissue secretome was composed of factors with a role in angiogenesis. CONCLUSIONS VAT has a higher secretory capacity than SAT, and this difference is an intrinsic feature of its cellular components. In view of the number of angiogenic factors in the adipose tissue secretome, we propose that VAT represents a more readily expandable tissue depot.

Collaboration


Dive into the Michael Guilhaus's collaboration.

Top Co-Authors

Avatar

Mark J. Raftery

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Ricardo Cavicchioli

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Christopher Barner-Kowollik

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Till Gruendling

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

I. K. Gregor

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

V. Mlynski

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Anne Poljak

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David S. Selby

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge