Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael H. Cho is active.

Publication


Featured researches published by Michael H. Cho.


Nature Genetics | 2010

Variants in FAM13A are associated with chronic obstructive pulmonary disease

Michael H. Cho; Nadia Boutaoui; Barbara J. Klanderman; Jody S. Sylvia; John Ziniti; Craig P. Hersh; Dawn L. DeMeo; Gary M. Hunninghake; Augusto L. Litonjua; David Sparrow; Christoph Lange; Sungho Won; James Murphy; Terri H. Beaty; Elizabeth A. Regan; Barry J. Make; John E. Hokanson; James D. Crapo; Xiangyang Q. Kong; Wayne H. Anderson; Ruth Tal-Singer; David Lomas; Per Bakke; Amund Gulsvik; Sreekumar G. Pillai; Edwin K. Silverman

We performed a genome-wide association study for chronic obstructive pulmonary disease (COPD) in three population cohorts, including 2,940 cases and 1,380 controls who were current or former smokers with normal lung function. We identified a new susceptibility locus at 4q22.1 in FAM13A and replicated this association in one case-control group (n = 1,006) and two family-based cohorts (n = 3,808) (rs7671167, combined P = 1.2 × 10−11, combined odds ratio in case-control studies 0.76, 95% confidence interval 0.69–0.83).


The New England Journal of Medicine | 2009

MMP12, lung function, and COPD in high-risk populations.

Gary M. Hunninghake; Michael H. Cho; Yohannes Tesfaigzi; Manuel Soto-Quiros; Lydiana Avila; Jessica Lasky-Su; Chris Stidley; Erik Melén; Cilla Söderhäll; Jenny Hallberg; Inger Kull; Juha Kere; Magnus Svartengren; Göran Pershagen; Magnus Wickman; Christoph Lange; Dawn L. DeMeo; Craig P. Hersh; Barbara J. Klanderman; Benjamin A. Raby; David Sparrow; Steven D. Shapiro; Edwin K. Silverman; Augusto A. Litonjua; Scott T. Weiss; Juan C. Celedón

BACKGROUND Genetic variants influencing lung function in children and adults may ultimately lead to the development of chronic obstructive pulmonary disease (COPD), particularly in high-risk groups. METHODS We tested for an association between single-nucleotide polymorphisms (SNPs) in the gene encoding matrix metalloproteinase 12 (MMP12) and a measure of lung function (prebronchodilator forced expiratory volume in 1 second [FEV(1)]) in more than 8300 subjects in seven cohorts that included children and adults. Within the Normative Aging Study (NAS), a cohort of initially healthy adult men, we tested for an association between SNPs that were associated with FEV(1) and the time to the onset of COPD. We then examined the relationship between MMP12 SNPs and COPD in two cohorts of adults with COPD or at risk for COPD. RESULTS The minor allele (G) of a functional variant in the promoter region of MMP12 (rs2276109 [-82A-->G]) was positively associated with FEV(1) in a combined analysis of children with asthma and adult former and current smokers in all cohorts (P=2x10(-6)). This allele was also associated with a reduced risk of the onset of COPD in the NAS cohort (hazard ratio, 0.65; 95% confidence interval [CI], 0.46 to 0.92; P=0.02) and with a reduced risk of COPD in a cohort of smokers (odds ratio, 0.63; 95% CI, 0.45 to 0.88; P=0.005) and among participants in a family-based study of early-onset COPD (P=0.006). CONCLUSIONS The minor allele of a SNP in MMP12 (rs2276109) is associated with a positive effect on lung function in children with asthma and in adults who smoke. This allele is also associated with a reduced risk of COPD in adult smokers.


Human Molecular Genetics | 2012

A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13

Michael H. Cho; Peter J. Castaldi; Emily S. Wan; Mateusz Siedlinski; Craig P. Hersh; Dawn L. DeMeo; Blanca E. Himes; Jody S. Sylvia; Barbara J. Klanderman; John Ziniti; Christoph Lange; Augusto A. Litonjua; David Sparrow; Elizabeth A. Regan; Barry J. Make; John E. Hokanson; Tanda Murray; Jacqueline B. Hetmanski; Sreekumar G. Pillai; Xiangyang Kong; Wayne Anderson; Ruth Tal-Singer; David A. Lomas; Harvey O. Coxson; Lisa Edwards; William MacNee; Jørgen Vestbo; Julie Yates; Alvar Agusti; Peter Calverley

The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10(-9)). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV(1) (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior.


The Lancet Respiratory Medicine | 2014

Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis

Michael H. Cho; Merry-Lynn N. McDonald; Xiaobo Zhou; Manuel Mattheisen; Peter J. Castaldi; Craig P. Hersh; Dawn L. DeMeo; Jody S. Sylvia; John Ziniti; Nan M. Laird; Christoph Lange; Augusto A. Litonjua; David Sparrow; Richard Casaburi; R. Graham Barr; Elizabeth A. Regan; Barry J. Make; John E. Hokanson; Sharon M. Lutz; Tanda Murray Dudenkov; Homayoon Farzadegan; Jacqueline B. Hetmanski; Ruth Tal-Singer; David A. Lomas; Per Bakke; Amund Gulsvik; James D. Crapo; Edwin K. Silverman; Terri H. Beaty

BACKGROUND The genetic risk factors for susceptibility to chronic obstructive pulmonary disease (COPD) are still largely unknown. Additional genetic variants are likely to be identified by genome-wide association studies in larger cohorts or specific subgroups. We sought to identify risk loci for moderate to severe and severe COPD with data from several cohort studies. METHODS We combined genome-wide association analysis data from participants in the COPDGene study (non-Hispanic white and African-American ethnic origin) and the ECLIPSE, NETT/NAS, and Norway GenKOLS studies (self-described white ethnic origin). We did analyses comparing control individuals with individuals with moderate to severe COPD and with a subset of individuals with severe COPD. Single nucleotide polymorphisms yielding a p value of less than 5 × 10(-7) in the meta-analysis at loci not previously described were genotyped in individuals from the family-based ICGN study. We combined results in a joint meta-analysis (threshold for significance p<5 × 10(-8)). FINDINGS Analysis of 6633 individuals with moderate to severe COPD and 5704 control individuals confirmed association at three known loci: CHRNA3 (p=6·38 × 10(-14)), FAM13A (p=1·12 × 10(-14)), and HHIP (p=1·57 × 10(-12)). We also showed significant evidence of association at a novel locus near RIN3 (p=5·25 × 10(-9)). In the overall meta-analysis (ie, including data from 2859 ICGN participants), the association with RIN3 remained significant (p=5·4 × 10(-9)). 3497 individuals were included in our analysis of severe COPD. The effect estimates for the loci near HHIP and CHRNA3 were significantly stronger in severe disease than in moderate to severe disease (p<0·01). We also identified associations at two additional loci: MMP12 (overall joint meta-analysis p=2·6 × 10(-9)) and TGFB2 (overall joint meta-analysis p=8·3 × 10(-9)). INTERPRETATION We have confirmed associations with COPD at three known loci and identified three new genome-wide significant associations. Genetic variants other than in α-1 antitrypsin increase the risk of COPD. FUNDING US National Heart, Lung, and Blood Institute; the Alpha-1 Foundation; the COPD Foundation through contributions from AstraZeneca, Boehringer Ingelheim, Novartis, and Sepracor; GlaxoSmithKline; Centers for Medicare and Medicaid Services; Agency for Healthcare Research and Quality; and US Department of Veterans Affairs.


The New England Journal of Medicine | 2016

Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma.

Michael J. McGeachie; Katherine P. Yates; Xiaobo Zhou; Feng Guo; Alice L. Sternberg; Mark L. Van Natta; Robert A. Wise; Stanley J. Szefler; Sunita Sharma; Alvin T. Kho; Michael H. Cho; Damien C. Croteau-Chonka; Peter J. Castaldi; Gaurav Jain; Amartya Sanyal; Ye Zhan; Bryan R. Lajoie; Job Dekker; John A. Stamatoyannopoulos; Ronina A. Covar; Robert S. Zeiger; N. Franklin Adkinson; Paul T. Williams; H. William Kelly; Hartmut Grasemann; Judith M. Vonk; Gerard H. Koppelman; Dirkje S. Postma; Benjamin A. Raby; Isaac Houston

BACKGROUND Tracking longitudinal measurements of growth and decline in lung function in patients with persistent childhood asthma may reveal links between asthma and subsequent chronic airflow obstruction. METHODS We classified children with asthma according to four characteristic patterns of lung-function growth and decline on the basis of graphs showing forced expiratory volume in 1 second (FEV1), representing spirometric measurements performed from childhood into adulthood. Risk factors associated with abnormal patterns were also examined. To define normal values, we used FEV1 values from participants in the National Health and Nutrition Examination Survey who did not have asthma. RESULTS Of the 684 study participants, 170 (25%) had a normal pattern of lung-function growth without early decline, and 514 (75%) had abnormal patterns: 176 (26%) had reduced growth and an early decline, 160 (23%) had reduced growth only, and 178 (26%) had normal growth and an early decline. Lower baseline values for FEV1, smaller bronchodilator response, airway hyperresponsiveness at baseline, and male sex were associated with reduced growth (P<0.001 for all comparisons). At the last spirometric measurement (mean [±SD] age, 26.0±1.8 years), 73 participants (11%) met Global Initiative for Chronic Obstructive Lung Disease spirometric criteria for lung-function impairment that was consistent with chronic obstructive pulmonary disease (COPD); these participants were more likely to have a reduced pattern of growth than a normal pattern (18% vs. 3%, P<0.001). CONCLUSIONS Childhood impairment of lung function and male sex were the most significant predictors of abnormal longitudinal patterns of lung-function growth and decline. Children with persistent asthma and reduced growth of lung function are at increased risk for fixed airflow obstruction and possibly COPD in early adulthood. (Funded by the Parker B. Francis Foundation and others; ClinicalTrials.gov number, NCT00000575.).


American Journal of Respiratory and Critical Care Medicine | 2010

Loci Identified by Genome-wide Association Studies Influence Different Disease-related Phenotypes in Chronic Obstructive Pulmonary Disease

Sreekumar G. Pillai; Xiangyang Kong; Lisa Edwards; Michael H. Cho; Wayne Anderson; Harvey O. Coxson; David A. Lomas; Edwin K. Silverman

RATIONALE Genome-wide association studies have shown significant associations between variants near hedgehog interacting protein HHIP, FAM13A, and cholinergic nicotinic acetylcholine receptor CHRNA3/5 with increased risk of chronic obstructive pulmonary disease (COPD) in smokers; however, the disease mechanisms behind these associations are not well understood. OBJECTIVES To identify the association between replicated loci and COPD-related phenotypes in well-characterized patient populations. METHODS The relationship between these three loci and COPD-related phenotypes was assessed in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-point (ECLIPSE) cohort. The results were validated in the family-based International COPD Genetics Network (ICGN). MEASUREMENTS AND MAIN RESULTS The CHRNA3/5 locus was significantly associated with pack-years of smoking (P = 0.002 and 3 × 10⁻⁴), emphysema assessed by a radiologist using high-resolution computed tomography (P = 2 × 10⁻⁴ and 4.8 × 10⁻⁵), and airflow obstruction (P = 0.004 and 1.8 × 10⁻⁵) in the ECLIPSE and ICGN populations, respectively. However, variants in the IREB2 gene were only significantly associated with FEV₁. The HHIP locus was not associated with smoking intensity but was associated with FEV₁/FVC (P = 1.9 × 10⁻⁴ and 0.004 in the ECLIPSE and ICGN populations). The HHIP locus was also associated with fat-free body mass (P = 0.007) and with both retrospectively (P = 0.015) and prospectively (P = 0.024) collected COPD exacerbations in the ECLIPSE cohort. Single-nucleotide polymorphisms in the FAM13A locus were associated with lung function. CONCLUSIONS The CHRNA3/5 locus was associated with increased smoking intensity and emphysema in individuals with COPD, whereas the HHIP and FAM13A loci were not associated with smoking intensity. The HHIP locus was associated with the systemic components of COPD and with the frequency of COPD exacerbations. FAM13A locus was associated with lung function.


American Journal of Respiratory and Critical Care Medicine | 2012

Genome-Wide Association Studies Identify CHRNA5/3 and HTR4 in the Development of Airflow Obstruction

Jemma B. Wilk; Nick Shrine; Laura R. Loehr; Jing Hua Zhao; Ani Manichaikul; Lorna M. Lopez; Albert V. Smith; Susan R. Heckbert; Joanna Smolonska; Wenbo Tang; Daan W. Loth; Ivan Curjuric; Jennie Hui; Michael H. Cho; Jeanne C. Latourelle; Amanda P. Henry; Melinda C. Aldrich; Per Bakke; Terri H. Beaty; Amy R. Bentley; Ingrid B. Borecki; Guy Brusselle; Kristin M. Burkart; Ting Hsu Chen; David Couper; James D. Crapo; Gail Davies; Josée Dupuis; Nora Franceschini; Amund Gulsvik

RATIONALE Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known. OBJECTIVES Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases. METHODS Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV(1) and its ratio to FVC (FEV(1)/FVC) both less than their respective lower limits of normal as determined by published reference equations. MEASUREMENTS AND MAIN RESULTS The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV(1)/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis. CONCLUSIONS These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction.


Human Molecular Genetics | 2010

The COPD genetic association compendium: a comprehensive online database of COPD genetic associations

Peter J. Castaldi; Michael H. Cho; Matthew Cohn; Fawn Langerman; Sienna Moran; Nestor Tarragona; Hala Moukhachen; Radhika Venugopal; Delvina Hasimja; Esther Kao; Byron C. Wallace; Craig P. Hersh; Sachin Bagade; Lars Bertram; Edwin K. Silverman; Thomas A Trikalinos

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. COPD is thought to arise from the interaction of environmental exposures and genetic susceptibility, and major research efforts are underway to identify genetic determinants of COPD susceptibility. With the exception of SERPINA1, genetic associations with COPD identified by candidate gene studies have been inconsistently replicated, and this literature is difficult to interpret. We conducted a systematic review and meta-analysis of all population-based, case-control candidate gene COPD studies indexed in PubMed before 16 July 2008. We stored our findings in an online database, which serves as an up-to-date compendium of COPD genetic associations and cumulative meta-analysis estimates. On the basis of our systematic review, the vast majority of COPD candidate gene era studies are underpowered to detect genetic effect odds ratios of 1.2-1.5. We identified 27 genetic variants with adequate data for quantitative meta-analysis. Of these variants, four were significantly associated with COPD susceptibility in random effects meta-analysis, the GSTM1 null variant (OR 1.45, CI 1.09-1.92), rs1800470 in TGFB1 (0.73, CI 0.64-0.83), rs1800629 in TNF (OR 1.19, CI 1.01-1.40) and rs1799896 in SOD3 (OR 1.97, CI 1.24-3.13). In summary, most COPD candidate gene era studies are underpowered to detect moderate-sized genetic effects. Quantitative meta-analysis identified four variants in GSTM1, TGFB1, TNF and SOD3 that show statistically significant evidence of association with COPD susceptibility.


American Journal of Respiratory and Critical Care Medicine | 2011

Genome-wide Association Study Identifies BICD1 as a Susceptibility Gene for Emphysema

Xiangyang Kong; Michael H. Cho; Wayne Anderson; Harvey O. Coxson; Nestor L. Müller; George R. Washko; Eric A. Hoffman; Per Bakke; Amund Gulsvik; David A. Lomas; Edwin K. Silverman; Sreekumar G. Pillai

RATIONALE chronic obstructive pulmonary disease (COPD), characterized by airflow limitation, is a disorder with high phenotypic and genetic heterogeneity. Pulmonary emphysema is a major but variable component of COPD; familial data suggest that different components of COPD, such as emphysema, may be influenced by specific genetic factors. OBJECTIVES to identify genetic determinants of emphysema assessed through high-resolution chest computed tomography in individuals with COPD. METHODS we performed a genome-wide association study (GWAS) of emphysema determined from chest computed tomography scans with a total of 2,380 individuals with COPD in three independent cohorts of white individuals from (1) a cohort from Bergen, Norway, (2) the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Study, and (3) the National Emphysema Treatment Trial (NETT). We tested single-nucleotide polymorphism associations with the presence or absence of emphysema determined by radiologist assessment in two of the three cohorts and a quantitative emphysema trait (percentage of lung voxels less than -950 Hounsfield units) in all three cohorts. MEASUREMENTS AND MAIN RESULTS we identified association of a single-nucleotide polymorphism in BICD1 with the presence or absence of emphysema (P = 5.2 × 10(-7) with at least mild emphysema vs. control subjects; P = 4.8 × 10(-8) with moderate and more severe emphysema vs. control subjects). CONCLUSIONS our study suggests that genetic variants in BICD1 are associated with qualitative emphysema in COPD. Variants in BICD1 are associated with length of telomeres, which suggests that a mechanism linked to accelerated aging may be involved in the pathogenesis of emphysema. Clinical trial registered with www.clinicaltrials.gov (NCT00292552).


Thorax | 2011

Genome-wide association study of smoking behaviours in patients with COPD

Mateusz Siedlinski; Michael H. Cho; Per Bakke; Amund Gulsvik; David A. Lomas; Wayne Anderson; Xiangyang Kong; Stephen I. Rennard; Terri H. Beaty; John E. Hokanson; James D. Crapo; Edwin K. Silverman; Harvey O. Coxson; Lisa Edwards; Katharine Knobil; William MacNee; Ruth Tal-Singer; Jørgen Vestbo; Julie Yates; Jeffrey L. Curtis; Ella A. Kazerooni; Nicola A. Hanania; Philip Alapat; Venkata Bandi; Kalpalatha K. Guntupalli; Elizabeth Guy; Antara Mallampalli; Charles Trinh; Mustafa A. Atik; Dl DeMeo

Background Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and COPD severity. Previous genome-wide association studies (GWAS) have identified numerous single nucleotide polymorphisms (SNPs) associated with the number of cigarettes smoked per day (CPD) and a dopamine beta-hydroxylase (DBH) locus associated with smoking cessation in multiple populations. Objective To identify SNPs associated with lifetime average and current CPD, age at smoking initiation, and smoking cessation in patients with COPD. Methods GWAS were conducted in four independent cohorts encompassing 3441 ever-smoking patients with COPD (Global Initiative for Obstructive Lung Disease stage II or higher). Untyped SNPs were imputed using the HapMap (phase II) panel. Results from all cohorts were meta-analysed. Results Several SNPs near the HLA region on chromosome 6p21 and in an intergenic region on chromosome 2q21 showed associations with age at smoking initiation, both with the lowest p=2×10−7. No SNPs were associated with lifetime average CPD, current CPD or smoking cessation with p<10−6. Nominally significant associations with candidate SNPs within cholinergic receptors, nicotinic, alpha 3/5 (CHRNA3/CHRNA5; eg, p=0.00011 for SNP rs1051730) and cytochrome P450, family 2, subfamily A, polypeptide 6 (CYP2A6; eg, p=2.78×10−5 for a non-synonymous SNP rs1801272) regions were observed for lifetime average CPD, however only CYP2A6 showed evidence of significant association with current CPD. A candidate SNP (rs3025343) in DBH was significantly (p=0.015) associated with smoking cessation. Conclusion The authors identified two candidate regions associated with age at smoking initiation in patients with COPD. Associations of CHRNA3/CHRNA5 and CYP2A6 loci with CPD and DBH with smoking cessation are also likely of importance in the smoking behaviours of patients with COPD.

Collaboration


Dive into the Michael H. Cho's collaboration.

Top Co-Authors

Avatar

Edwin K. Silverman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig P. Hersh

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Peter J. Castaldi

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Terri H. Beaty

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Lomas

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dawn L. DeMeo

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge