Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael H. Cosh is active.

Publication


Featured researches published by Michael H. Cosh.


IEEE Transactions on Geoscience and Remote Sensing | 2010

Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products

Thomas J. Jackson; Michael H. Cosh; Rajat Bindlish; Patrick J. Starks; David D. Bosch; Mark S. Seyfried; David C. Goodrich; Mary Susan Moran; Jinyang Du

Validation is an important and particularly challenging task for remote sensing of soil moisture. A key issue in the validation of soil moisture products is the disparity in spatial scales between satellite and in situ observations. Conventional measurements of soil moisture are made at a point, whereas satellite sensors provide an integrated area/volume value for a much larger spatial extent. In this paper, four soil moisture networks were developed and used as part of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) validation program. Each network is located in a different climatic region of the U.S., and provides estimates of the average soil moisture over highly instrumented experimental watersheds and surrounding areas that approximate the size of the AMSR-E footprint. Soil moisture measurements have been made at these validation sites on a continuous basis since 2002, which provided a seven-year period of record for this analysis. The National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) standard soil moisture products were compared to the network observations, along with two alternative soil moisture products developed using the single-channel algorithm (SCA) and the land parameter retrieval model (LPRM). The metric used for validation is the root-mean-square error (rmse) of the soil moisture estimate as compared to the in situ data. The mission requirement for accuracy defined by the space agencies is 0.06 m3/m3. The statistical results indicate that each algorithm performs differently at each site. Neither the NASA nor the JAXA standard products provide reliable estimates for all the conditions represented by the four watershed sites. The JAXA algorithm performs better than the NASA algorithm under light-vegetation conditions, but the NASA algorithm is more reliable for moderate vegetation. However, both algorithms have a moderate to large bias in all cases. The SCA had the lowest overall rmse with a small bias. The LPRM had a very large overestimation bias and retrieval errors. When site-specific corrections were applied, all algorithms had approximately the same error level and correlation. These results clearly show that there is much room for improvement in the algorithms currently in use by JAXA and NASA. They also illustrate the potential pitfalls in using the products without a careful evaluation.


IEEE Transactions on Geoscience and Remote Sensing | 2012

Validation of Soil Moisture and Ocean Salinity (SMOS) Soil Moisture Over Watershed Networks in the U.S.

Thomas J. Jackson; Rajat Bindlish; Michael H. Cosh; Tianjie Zhao; Patrick J. Starks; David D. Bosch; Mark S. Seyfried; M.S. Moran; David C. Goodrich; Yann Kerr; Delphine J. Leroux

Estimation of soil moisture at large scale has been performed using several satellite-based passive microwave sensors and a variety of retrieval methods over the past two decades. The most recent source of soil moisture is the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission. A thorough validation must be conducted to insure product quality that will, in turn, support the widespread utilization of the data. This is especially important since SMOS utilizes a new sensor technology and is the first passive L-band system in routine operation. In this paper, we contribute to the validation of SMOS using a set of four in situ soil moisture networks located in the U.S. These ground-based observations are combined with retrievals based on another satellite sensor, the Advanced Microwave Scanning Radiometer (AMSR-E). The watershed sites are highly reliable and address scaling with replicate sampling. Results of the validation analysis indicate that the SMOS soil moisture estimates are approaching the level of performance anticipated, based on comparisons with the in situ data and AMSR-E retrievals. The overall root-mean-square error of the SMOS soil moisture estimates is 0.043 m3/m3 for the watershed networks (ascending). There are bias issues at some sites that need to be addressed, as well as some outlier responses. Additional statistical metrics were also considered. Analyses indicated that active or recent rainfall can contribute to interpretation problems when assessing algorithm performance, which is related to the contributing depth of the satellite sensor. Using a precipitation flag can improve the performance. An investigation of the vegetation optical depth (tau) retrievals provided by the SMOS algorithm indicated that, for the watershed sites, these are not a reliable source of information about the vegetation canopy. The SMOS algorithms will continue to be refined as feedback from validation is evaluated, and it is expected that the SMOS estimates will improve.


Journal of Atmospheric and Oceanic Technology | 2007

The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN)

Garry Schaefer; Michael H. Cosh; Thomas J. Jackson

Abstract Surface soil moisture plays an important role in the dynamics of land–atmosphere interactions and many current and upcoming models and satellite sensors. In situ data will be required to provide calibration and validation datasets. Therefore, there is a need for sensor networks at a variety of scales that provide near-real-time soil moisture and temperature data combined with other climate information for use in natural resource planning, drought assessment, water resource management, and resource inventory. The U.S. Department of Agriculture (USDA)–Natural Resources Conservation Service (NRCS)–National Water and Climate Center has established a continental-scale network to address this need, called the Soil Climate Analysis Network (SCAN). This ever-growing network has more than 116 stations located in 39 states, most of which have been installed since 1999. The stations are remotely located and collect hourly atmospheric, soil moisture, and soil temperature data that are available to the public...


Journal of Hydrometeorology | 2010

Estimating Spatial Sampling Errors in Coarse-Scale Soil Moisture Estimates Derived from Point-Scale Observations

Diego Gonzalez Miralles; Wade T. Crow; Michael H. Cosh

Abstract The validation of satellite surface soil moisture products requires comparisons between point-scale ground observations and footprint-scale (>100 km2) retrievals. In regions containing a limited number of measurement sites per footprint, some of the observed difference between the retrievals and ground observations is attributable to spatial sampling error and not the intrinsic error of the satellite retrievals themselves. Here, a triple collocation (TC) approach is applied to footprint-scale soil moisture products acquired from passive microwave remote sensing, land surface modeling, and a single ground-based station with the goal of the estimating (and correcting for) spatial sampling error in footprint-scale soil moisture estimates derived from the ground station. Using these three soil moisture products, the TC approach is shown to estimate point-to-footprint soil moisture sampling errors to within 0.0059 m3 m−3 and enhance the ability to validate satellite footprint-scale soil moisture produ...


IEEE Transactions on Geoscience and Remote Sensing | 2016

Assessment of the SMAP Passive Soil Moisture Product

Steven Chan; Rajat Bindlish; Peggy E. O'Neill; Eni G. Njoku; Thomas J. Jackson; Andreas Colliander; Fan Chen; Mariko S. Burgin; R. Scott Dunbar; Jeffrey R. Piepmeier; Simon H. Yueh; Dara Entekhabi; Michael H. Cosh; Todd G. Caldwell; Jeffrey P. Walker; Xiaoling Wu; Aaron A. Berg; Tracy L. Rowlandson; Anna Pacheco; Heather McNairn; M. Thibeault; Ángel González-Zamora; Mark S. Seyfried; David D. Bosch; Patrick J. Starks; David C. Goodrich; John H. Prueger; Michael A. Palecki; Eric E. Small; Marek Zreda

The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using an L-band (active) radar and an L-band (passive) radiometer. After an irrecoverable hardware failure of the radar on July 7, 2015, the radiometer-only soil moisture product became the only operational soil moisture product for SMAP. The product provides soil moisture estimates posted on a 36 km Earth-fixed grid produced using brightness temperature observations from descending passes. Within months after the commissioning of the SMAP radiometer, the product was assessed to have attained preliminary (beta) science quality, and data were released to the public for evaluation in September 2015. The product is available from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center. This paper provides a summary of the Level 2 Passive Soil Moisture Product (L2_SM_P) and its validation against in situ ground measurements collected from different data sources. Initial in situ comparisons conducted between March 31, 2015 and October 26, 2015, at a limited number of core validation sites (CVSs) and several hundred sparse network points, indicate that the V-pol Single Channel Algorithm (SCA-V) currently delivers the best performance among algorithms considered for L2_SM_P, based on several metrics. The accuracy of the soil moisture retrievals averaged over the CVSs was 0.038 m3/m3 unbiased root-mean-square difference (ubRMSD), which approaches the SMAP mission requirement of 0.040 m3/m3.


Vadose Zone Journal | 2012

Temporal Stability of Soil Water Contents: A Review of Data and Analyses

Karl Vanderlinden; Harry Vereecken; H. Hardelauf; Michael Herbst; Gonzalo Martinez; Michael H. Cosh; Yakov A. Pachepsky

Temporal stability (TS) of soil water content (SWC) has been observed throughout a wide range of spatial and temporal scales. Yet, the evidence with respect to the controlling factors on TS SWC remains contradictory or nonexistent. The objective of this work was to develop the first comprehensive review of methodologies to evaluate TS SWC and to present and analyze an inventory of published data. Statistical analysis of mean relative difference (MRD) data and associated standard deviations (SDRD) from 157 graphs in 37 publications showed a trend for the standard deviation of MRD (SDMRD) to increase with scale, as expected. The MRD followed generally the Gaussian distribution with R 2 ranging from 0.841 to 0.998. No relationship between SDMRD and R 2 was observed. The smallest R 2 values were mostly found for negatively skewed and platykurtic MRD distributions. A new statistical model for temporally stable SWC fields was proposed. The analysis of the published data on seven measurement-, terrain-, and climate-related potentially controlling factors of TS SWC suggested intertwined effects of controlling factors rather than single dominant factors. This calls for a focused research effort on the interactions and effects of measurement design, topography, soil, vegetation and climate on TS SWC. Research avenues are proposed which will lead to a better understanding of the TS phenomenon and ultimately to the identification of the underlying mechanisms.


Journal of Hydrometeorology | 2011

The Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System

Q. Liu; Rolf H. Reichle; Rajat Bindlish; Michael H. Cosh; Wade T. Crow; Richard de Jeu; Gabrielle De Lannoy; George J. Huffman; Thomas J. Jackson

AbstractThe contributions of precipitation and soil moisture observations to soil moisture skill in a land data assimilation system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). Soil moisture skill (defined as the anomaly time series correlation coefficient R) is assessed using in situ observations in the continental United States at 37 single-profile sites within the Soil Climate Analysis Network (SCAN) for which skillful AMSR-E retrievals are available and at 4 USDA Agricultural Research Service (“CalVal”) watersheds with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satel...


IEEE Transactions on Geoscience and Remote Sensing | 2015

The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch Calibration and Validation of the SMAP Soil Moisture Algorithms

Heather McNairn; Thomas J. Jackson; Grant Wiseman; Stephane Belair; Aaron A. Berg; Paul R. Bullock; Andreas Colliander; Michael H. Cosh; Seung-Bum Kim; Ramata Magagi; Mahta Moghaddam; Eni G. Njoku; Justin R. Adams; Saeid Homayouni; Emmanuel RoTimi Ojo; Tracy L. Rowlandson; Jiali Shang; Kalifa Goita; Mehdi Hosseini

The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite is scheduled for launch in January 2015. In order to develop robust soil moisture retrieval algorithms that fully exploit the unique capabilities of SMAP, algorithm developers had identified a need for long-duration combined active and passive L-band microwave observations. In response to this need, a joint Canada-U.S. field experiment (SMAPVEX12) was conducted in Manitoba (Canada) over a six-week period in 2012. Several times per week, NASA flew two aircraft carrying instruments that could simulate the observations the SMAP satellite would provide. Ground crews collected soil moisture data, crop measurements, and biomass samples in support of this campaign. The objective of SMAPVEX12 was to support the development, enhancement, and testing of SMAP soil moisture retrieval algorithms. This paper details the airborne and field data collection as well as data calibration and analysis. Early results from the SMAP active radar retrieval methods are presented and demonstrate that relative and absolute soil moisture can be delivered by this approach. Passive active L-band sensor (PALS) antenna temperatures and reflectivity, as well as backscatter, closely follow dry down and wetting events observed during SMAPVEX12. The SMAPVEX12 experiment was highly successful in achieving its objectives and provides a unique and valuable data set that will advance algorithm development.


IEEE Transactions on Geoscience and Remote Sensing | 2010

A Quasi-Global Evaluation System for Satellite-Based Surface Soil Moisture Retrievals

Wade T. Crow; Diego Gonzalez Miralles; Michael H. Cosh

A recently developed data assimilation technique offers the potential to greatly expand the geographic domain over which remotely sensed surface soil moisture retrievals can be evaluated by effectively substituting (relatively plentiful) rain-gauge observations for (less commonly available) ground-based soil moisture measurements. The technique is based on calculating the Pearson correlation coefficient (Rvalue) between rainfall errors and Kalman filter analysis increments realized during the assimilation of a remotely sensed soil moisture product into the antecedent precipitation index (API). Here, the existing Rvalue approach is modified by reformulating it to run on an anomaly basis where long-term seasonal trends are explicitly removed and by calculating API analysis increments using a Rauch-Tung-Striebel smoother instead of a Kalman filter. This reformulated approach is then applied to a number of Advanced Microwave Scanning Radiometer soil moisture products acquired within three heavily instrumented watershed sites in the southern U.S. Rvalue -based evaluations of soil moisture products within these sites are verified based on comparisons with available ground-based soil moisture measurements. Results demonstrate that, without access to ground-based soil moisture measurements, the Rvalue methodology can accurately mimic anomaly correlation coefficients calculated between remotely sensed soil moisture products and soil moisture observations obtained from dense ground-based networks. Sensitivity results also indicate that the predictive skill of the Rvalue metric is enhanced by both proposed modifications to its methodology. Finally, Rvalue calculations are expanded to a quasi-global (50? S-50? N) domain using rainfall measurements derived from the Tropical Rainfall Measurement Mission Precipitation Analysis. Spatial patterns in calculated Rvalue fields are compared to regions of strong land-atmosphere coupling and used to refine expectations concerning the global distribution of land areas in which remotely sensed surface soil moisture retrievals will contribute to atmospheric forecasting applications.


Journal of Hydrometeorology | 2014

Assimilation of Remotely Sensed Soil Moisture and Snow Depth Retrievals for Drought Estimation

Sujay V. Kumar; Christa D. Peters-Lidard; David Mocko; Rolf H. Reichle; Yuqiong Liu; Kristi R. Arsenault; Youlong Xia; Michael B. Ek; George A. Riggs; Ben Livneh; Michael H. Cosh

AbstractThe accurate knowledge of soil moisture and snow conditions is important for the skillful characterization of agricultural and hydrologic droughts, which are defined as deficits of soil moisture and streamflow, respectively. This article examines the influence of remotely sensed soil moisture and snow depth retrievals toward improving estimates of drought through data assimilation. Soil moisture and snow depth retrievals from a variety of sensors (primarily passive microwave based) are assimilated separately into the Noah land surface model for the period of 1979–2011 over the continental United States, in the North American Land Data Assimilation System (NLDAS) configuration. Overall, the assimilation of soil moisture and snow datasets was found to provide marginal improvements over the open-loop configuration. Though the improvements in soil moisture fields through soil moisture data assimilation were barely at the statistically significant levels, these small improvements were found to translat...

Collaboration


Dive into the Michael H. Cosh's collaboration.

Top Co-Authors

Avatar

Thomas J. Jackson

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Rajat Bindlish

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peggy E. O'Neill

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick J. Starks

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Todd G. Caldwell

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

David D. Bosch

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

John H. Prueger

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge