Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael H. Hecht is active.

Publication


Featured researches published by Michael H. Hecht.


Science | 2009

Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site

Michael H. Hecht; Samuel P. Kounaves; Richard C. Quinn; S. J. West; Suzanne M. M. Young; Douglas W. Ming; David C. Catling; B. C. Clark; William V. Boynton; John H. Hoffman; Lauren DeFlores; K. Gospodinova; Jason Kapit; Peter H. Smith

Phoenix Ascending The Phoenix mission landed on Mars in March 2008 with the goal of studying the ice-rich soil of the planets northern arctic region. Phoenix included a robotic arm, with a camera attached to it, with the capacity to excavate through the soil to the ice layer beneath it, scoop up soil and water ice samples, and deliver them to a combination of other instruments—including a wet chemistry lab and a high-temperature oven combined with a mass spectrometer—for chemical and geological analysis. Using this setup, Smith et al. (p. 58) found a layer of ice at depths of 5 to 15 centimeters, Boynton et al. (p. 61) found evidence for the presence of calcium carbonate in the soil, and Hecht et al. (p. 64) found that most of the soluble chlorine at the surface is in the form of perchlorate. Together these results suggest that the soil at the Phoenix landing site must have suffered alteration through the action of liquid water in geologically the recent past. The analysis revealed an alkaline environment, in contrast to that found by the Mars Exploration Rovers, indicating that many different environments have existed on Mars. Phoenix also carried a lidar, an instrument that sends laser light upward into the atmosphere and detects the light scattered back by clouds and dust. An analysis of the data by Whiteway et al. (p. 68) showed that clouds of ice crystals that precipitated back to the surface formed on a daily basis, providing a mechanism to place ice at the surface. Most of the chlorine at the Phoenix landing site is in the form of perchlorate, a salt that is highly soluble in water. The Wet Chemistry Laboratory on the Phoenix Mars Lander performed aqueous chemical analyses of martian soil from the polygon-patterned northern plains of the Vastitas Borealis. The solutions contained ~10 mM of dissolved salts with 0.4 to 0.6% perchlorate (ClO4) by mass leached from each sample. The remaining anions included small concentrations of chloride, bicarbonate, and possibly sulfate. Cations were dominated by Mg2+ and Na+, with small contributions from K+ and Ca2+. A moderately alkaline pH of 7.7 ± 0.5 was measured, consistent with a carbonate-buffered solution. Samples analyzed from the surface and the excavated boundary of the ~5-centimeter-deep ice table showed no significant difference in soluble chemistry.


Science | 2009

H2O at the Phoenix Landing Site

Peter W. H. Smith; Leslie Kay Tamppari; Raymond E. Arvidson; D. S. Bass; Diana L. Blaney; William V. Boynton; A. Carswell; David C. Catling; B. C. Clark; Thomas J. Duck; Eric DeJong; David A. Fisher; W. Goetz; H. P. Gunnlaugsson; Michael H. Hecht; V. J. Hipkin; John H. Hoffman; S. F. Hviid; H. U. Keller; Samuel P. Kounaves; Carlos F. Lange; Mark T. Lemmon; M. B. Madsen; W. J. Markiewicz; J. Marshall; Christopher P. McKay; Michael T. Mellon; D. W. Ming; Richard V. Morris; W. T. Pike

Phoenix Ascending The Phoenix mission landed on Mars in March 2008 with the goal of studying the ice-rich soil of the planets northern arctic region. Phoenix included a robotic arm, with a camera attached to it, with the capacity to excavate through the soil to the ice layer beneath it, scoop up soil and water ice samples, and deliver them to a combination of other instruments—including a wet chemistry lab and a high-temperature oven combined with a mass spectrometer—for chemical and geological analysis. Using this setup, Smith et al. (p. 58) found a layer of ice at depths of 5 to 15 centimeters, Boynton et al. (p. 61) found evidence for the presence of calcium carbonate in the soil, and Hecht et al. (p. 64) found that most of the soluble chlorine at the surface is in the form of perchlorate. Together these results suggest that the soil at the Phoenix landing site must have suffered alteration through the action of liquid water in geologically the recent past. The analysis revealed an alkaline environment, in contrast to that found by the Mars Exploration Rovers, indicating that many different environments have existed on Mars. Phoenix also carried a lidar, an instrument that sends laser light upward into the atmosphere and detects the light scattered back by clouds and dust. An analysis of the data by Whiteway et al. (p. 68) showed that clouds of ice crystals that precipitated back to the surface formed on a daily basis, providing a mechanism to place ice at the surface. A water ice layer was found 5 to 15 centimeters beneath the soil of the north polar region of Mars. The Phoenix mission investigated patterned ground and weather in the northern arctic region of Mars for 5 months starting 25 May 2008 (solar longitude between 76.5° and 148°). A shallow ice table was uncovered by the robotic arm in the center and edge of a nearby polygon at depths of 5 to 18 centimeters. In late summer, snowfall and frost blanketed the surface at night; H2O ice and vapor constantly interacted with the soil. The soil was alkaline (pH = 7.7) and contained CaCO3, aqueous minerals, and salts up to several weight percent in the indurated surface soil. Their formation likely required the presence of water.


Science | 2009

Evidence for Calcium Carbonate at the Mars Phoenix Landing Site

William V. Boynton; D. W. Ming; Samuel P. Kounaves; Suzanne M. M. Young; Raymond E. Arvidson; Michael H. Hecht; John H. Hoffman; Paul B. Niles; David K. Hamara; Richard C. Quinn; Peter H. Smith; B. Sutter; David C. Catling; Richard V. Morris

Phoenix Ascending The Phoenix mission landed on Mars in March 2008 with the goal of studying the ice-rich soil of the planets northern arctic region. Phoenix included a robotic arm, with a camera attached to it, with the capacity to excavate through the soil to the ice layer beneath it, scoop up soil and water ice samples, and deliver them to a combination of other instruments—including a wet chemistry lab and a high-temperature oven combined with a mass spectrometer—for chemical and geological analysis. Using this setup, Smith et al. (p. 58) found a layer of ice at depths of 5 to 15 centimeters, Boynton et al. (p. 61) found evidence for the presence of calcium carbonate in the soil, and Hecht et al. (p. 64) found that most of the soluble chlorine at the surface is in the form of perchlorate. Together these results suggest that the soil at the Phoenix landing site must have suffered alteration through the action of liquid water in geologically the recent past. The analysis revealed an alkaline environment, in contrast to that found by the Mars Exploration Rovers, indicating that many different environments have existed on Mars. Phoenix also carried a lidar, an instrument that sends laser light upward into the atmosphere and detects the light scattered back by clouds and dust. An analysis of the data by Whiteway et al. (p. 68) showed that clouds of ice crystals that precipitated back to the surface formed on a daily basis, providing a mechanism to place ice at the surface. The action of liquid water may have helped to form the calcium carbonate found in the soils around the Phoenix landing site. Carbonates are generally products of aqueous processes and may hold important clues about the history of liquid water on the surface of Mars. Calcium carbonate (approximately 3 to 5 weight percent) has been identified in the soils around the Phoenix landing site by scanning calorimetry showing an endothermic transition beginning around 725°C accompanied by evolution of carbon dioxide and by the ability of the soil to buffer pH against acid addition. Based on empirical kinetics, the amount of calcium carbonate is most consistent with formation in the past by the interaction of atmospheric carbon dioxide with liquid water films on particle surfaces.


Journal of Geophysical Research | 2008

Microscopy capabilities of the Microscopy, Electrochemistry, and Conductivity Analyzer

Michael H. Hecht; J. Marshall; W. T. Pike; Urs Staufer; Diana L. Blaney; D. Braendlin; S. Gautsch; W. Goetz; H.-R. Hidber; H. U. Keller; W. J. Markiewicz; A. Mazer; T. P. Meloy; John Michael Morookian; C. Mogensen; D. Parrat; Peter W. H. Smith; H. Sykulska; R. Tanner; Robert O. Reynolds; A. Tonin; S. Vijendran; M. Weilert; P. Woida

The Phoenix microscopy station, designed for the study of Martian dust and soil,consists of a sample delivery system, an optical microscope, and an atomic force microscope. The combination of microscopies facilitates the study of features from the millimeter to nanometer scale. Light-emitting diode illumination allows for full color optical imaging of the samples as well as imaging of ultraviolet-induced visible fluorescence. The atomic force microscope uses an array of silicon tips and can operate in both static and dynamic mode.


Journal of Applied Physics | 1987

The localization and crystallographic dependence of Si suboxide species at the SiO2/Si interface

Paula J. Grunthaner; Michael H. Hecht; Frank J. Grunthaner; N. M. Johnson

X‐ray photoemission spectroscopy has been used to examine the localization and crystallographic dependence of Si+1, Si+2, and Si+3 suboxide states at the SiO2/Si interface for (100)‐ and (111)‐oriented substrates with gate oxide quality thermal oxides. The Si+1 and Si+2 states are localized within 6–10 A of the interface while the Si+3 state extends ∼30 A into the bulk SiO2. The distribution of Si+1 and Si+2 states shows a strong crystallographic dependence with Si+2 dominating on (100) substrates and Si+1 dominating on (111) substrates. This crystallographic dependence is anticipated from consideration of ideal unreconstructed (100) and (111) Si surfaces, suggesting that (1) the Si+1 and Si+2 states are localized immediately within the first monolayer at the interface and (2) the first few monolayers of substrate Si atoms are not significantly displaced from the bulk. The total number of suboxide states observed at the SiO2/Si interface corresponds to 94% and 83% of a monolayer for these (100) and (111) ...


Science | 2009

Mars Water-Ice Clouds and Precipitation

James A. Whiteway; Leonce Komguem; Cameron S. Dickinson; Curtis R. Cook; M. Illnicki; J. A. Seabrook; Vlad Calin Popovici; Thomas J. Duck; Richard Davy; Peter A. Taylor; Jagruti Pathak; David A. Fisher; A. Carswell; M. Daly; V. J. Hipkin; Aaron P. Zent; Michael H. Hecht; Stephen Wood; Leslie Kay Tamppari; Nilton De Oliveira Renno; John E. Moores; Mark T. Lemmon; Frank Daerden; Peter W. H. Smith

Phoenix Ascending The Phoenix mission landed on Mars in March 2008 with the goal of studying the ice-rich soil of the planets northern arctic region. Phoenix included a robotic arm, with a camera attached to it, with the capacity to excavate through the soil to the ice layer beneath it, scoop up soil and water ice samples, and deliver them to a combination of other instruments—including a wet chemistry lab and a high-temperature oven combined with a mass spectrometer—for chemical and geological analysis. Using this setup, Smith et al. (p. 58) found a layer of ice at depths of 5 to 15 centimeters, Boynton et al. (p. 61) found evidence for the presence of calcium carbonate in the soil, and Hecht et al. (p. 64) found that most of the soluble chlorine at the surface is in the form of perchlorate. Together these results suggest that the soil at the Phoenix landing site must have suffered alteration through the action of liquid water in geologically the recent past. The analysis revealed an alkaline environment, in contrast to that found by the Mars Exploration Rovers, indicating that many different environments have existed on Mars. Phoenix also carried a lidar, an instrument that sends laser light upward into the atmosphere and detects the light scattered back by clouds and dust. An analysis of the data by Whiteway et al. (p. 68) showed that clouds of ice crystals that precipitated back to the surface formed on a daily basis, providing a mechanism to place ice at the surface. Laser remote sensing from Mars’ surface revealed water-ice clouds that formed during the day and precipitated at night. The light detection and ranging instrument on the Phoenix mission observed water-ice clouds in the atmosphere of Mars that were similar to cirrus clouds on Earth. Fall streaks in the cloud structure traced the precipitation of ice crystals toward the ground. Measurements of atmospheric dust indicated that the planetary boundary layer (PBL) on Mars was well mixed, up to heights of around 4 kilometers, by the summer daytime turbulence and convection. The water-ice clouds were detected at the top of the PBL and near the ground each night in late summer after the air temperature started decreasing. The interpretation is that water vapor mixed upward by daytime turbulence and convection forms ice crystal clouds at night that precipitate back toward the surface.


Journal of Geophysical Research | 2004

Electric and magnetic signatures of dust devils from the 2000–2001 MATADOR desert tests

W. M. Farrell; Peter W. H. Smith; Gregory Delory; G. B. Hillard; J. Marshall; David C. Catling; Michael H. Hecht; David M. Tratt; Nilton De Oliveira Renno; M. D. Desch; Steven A. Cummer; J. G. Houser; B. Johnson

[1] Dust devils are significant meteorological phenomena on Mars: They are ubiquitous, continually gardening the Martian surface, and may be the primary atmospheric dustloading mechanism in nonstorm seasons. Further, dust grains in the swirling dust devils may become electrically charged via triboelectric effects. Electrical effects associated with terrestrial dust devils have been reported previously, but these were isolated measurements (electric fields only) with no corroborating measurements. To study the fluid and electrical forces associated with dust devils, NASA’s Human Exploration and Development of Space (HEDS) enterprise sponsored a set of desert field tests with a suite of mutually compatible and complementary instruments in order to determine the relationship between electric, magnetic, and fluid forces. The project (originally a selected flight project) was entitled ‘‘Martian ATmosphere And Dust in the Optical and Radio’’ (MATADOR). In this work, we present a number of interesting examples of the electromagnetic nature of the dust devil. We also describe potential hazards of the dust devil and how similar devil- and storm-related forces on Mars might affect any human occupation. INDEX TERMS: 6225 Planetology: Solar System Objects: Mars; 3304 Meteorology and Atmospheric Dynamics: Atmospheric electricity; 3379 Meteorology and Atmospheric Dynamics: Turbulence; 3394 Meteorology and Atmospheric Dynamics: Instruments and techniques; 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); KEYWORDS: triboelectricity, electric fields, dust devils, magnetic fields, atmospheric electricity


Thin Solid Films | 1989

Hydrogen-terminated silicon substrates for low-temperature molecular beam epitaxy

Paula J. Grunthaner; Frank J. Grunthaner; R. W. Fathauer; T. L. Lin; Michael H. Hecht; L.D. Bell; William J. Kaiser; F.D. Schowengerdt; J.H. Mazur

Abstract The preparation of hydrogen-terminated silicon surfaces for use as starting substrates for low-temperature epitaxial growth by molecular beam epitaxy is examined in detail. The procedure involves the ex-situ removal under nitrogen of residual oxide from a silicon substrate using a spin-clean with HF in ethanol, followed by the in-situ low-temperature desorption (150°C) of physisorbed etch residues. The critical steps and the chemical basis for these steps are examined using X-ray photoelectron spectroscopy. Impurity residues at the epilayer-substrate interface following subsequent homoepitaxial growth are studied using Auger spectroscopy, secondary ion mass spectrometry, and transmission electron microscopy. Finally, scanning tunneling microscopy is used to examine the effect of cleaning methods on substrate morphology.


Proceedings of SPIE | 1995

Gas-phase silicon micromachining with xenon difluoride

Floy I. Chang; Richard Yeh; Gisela Lin; Patrick B. Chu; Eric G. Hoffman; Ezekiel J. Kruglick; Kristofer S. J. Pister; Michael H. Hecht

Xenon difluoride is a gas phase, room temperature, isotropic silicon etchant with extremely high selectivity to many materials commonly used in microelectromechancial systems, including photoresists, aluminum, and silicon dioxide. Using a simple vacuum system, the effects of etch aperture and loading were explored for etches between 10 and 200 micrometers . Etch rates as high as 40 micrometers /minute were observed. Initial characteriation of wafer surface temperature during the etch indicates tens of degrees of self-heating, which is known to cause substantial decrease in etch rate.


Journal of Geophysical Research | 2007

Water vapor diffusion in Mars subsurface environments

Troy L. Hudson; Oded Aharonson; Norbert Schorghofer; C. B. Farmer; Michael H. Hecht; Nathan T. Bridges

The diffusion coefficient of water vapor in unconsolidated porous media is measured for various soil simulants at Mars-like pressures and subzero temperatures. An experimental chamber which simultaneously reproduces a low-pressure, low-temperature, and low-humidity environment is used to monitor water flux from an ice source through a porous diffusion barrier. Experiments are performed on four types of simulants: 40–70 µm glass beads, sintered glass filter disks, 1–3 µm dust (both loose and packed), and JSC Mars–1. A theoretical framework is presented that applies to environments that are not necessarily isothermal or isobaric. For most of our samples, we find diffusion coefficients in the range of 2.8 to 5.4 cm^2 s^-1 at 600 Pascal and 260 K. This range becomes 1.9–4.7 cm^2 s^-1 when extrapolated to a Mars-like temperature of 200 K. Our preferred value for JSC Mars–1 at 600 Pa and 200 K is 3.7 ± 0.5 cm^2 s^-1. The tortuosities of the glass beads is about 1.8. Packed dust displays a lower mean diffusion coefficient of 0.38 ± 0.26 cm^2 s^-1, which can be attributed to transition to the Knudsen regime where molecular collisions with the pore walls dominate. Values for the diffusion coefficient and the variation of the diffusion coefficient with pressure are well matched by existing models. The survival of shallow subsurface ice on Mars and the providence of diffusion barriers are considered in light of these measurements.

Collaboration


Dive into the Michael H. Hecht's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. T. Pike

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

M. B. Madsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Urs Staufer

Delft University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge