Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael H. Ossipov is active.

Publication


Featured researches published by Michael H. Ossipov.


Trends in Neurosciences | 2002

Chronic pain and medullary descending facilitation.

Frank Porreca; Michael H. Ossipov; G.F. Gebhart

Chronic pain, whether the result of nerve trauma or persistent inflammation, is a debilitating condition that exerts a high social cost in terms of productivity, economic impact and quality of life. Currently available therapies yield limited success in treating such pain, suggesting the need for new insight into underlying mechanism(s). Here, we examine the likelihood that sustained activation of descending modulatory pathways that facilitate pain transmission could underlie some states of chronic pain. Such activation of descending facilitatory pathways might be the result of neuroplastic changes that occur at medullary sites in response to persistent input of pain signals. Understanding the mechanisms of descending facilitation and the spinal effects of such discharge could provide new insights into the modulation of chronic pain.


Annals of the New York Academy of Sciences | 2006

Spinal and Supraspinal Mechanisms of Neuropathic Pain

Michael H. Ossipov; Josephine Lai; T. Philip Malan; Frank Porreca

Abstract: Neuropathic pain is associated with abnormal tactile and thermal responses that may be extraterritorial to the injured nerve. Importantly, tactile allodynia and thermal hyperalgesia may involve separate pathways, since complete and partial spinal cord lesions have blocked allodynia, but not hyperalgesia, after spinal nerve ligation (SNL). Furthermore, lesions of the dorsal column, and lidocaine microinjected into dorsal column nuclei block only tactile allodynia. Conversely, thermal hyperalgesia, but not tactile allodynia was blocked by desensitizatin of C‐fibers with resiniferotoxin. Therefore, it seems that tactile allodynia is likely to be mediated by large diameter Aβ fibers, and not susceptible to modulation by spinal opioids, whereas hyperalgesia is mediated by unmyelinated C‐fibers, and is sensitive to blockade by spinal opioids. Additionally, abnormal, spontaneous afferent drive in neuropathic pain may contribute to NMDA‐mediated central sensitization by glutamate and by non‐opioid actions of spinal dynorphin. Correspondingly, SNL elicited elevation in spinal dynorphin content in spinal segments at and adjacent to the zone of entry of the injured nerve along with signs of neuropathic pain. Antiserum to dynorphin A(1–17) or MK‐801 given spinally blocked thermal hyperalgesia, but not tactile allodynia, after SNL, and also restored diminished morphine antinociception. Finally, afferent drive may induce descending facilitation from the rostroventromedial medulla (RVM). Blocking afferent drive with bupivicaine also restored lost potency of PAG morphine, as did CCK antagonists in the RVM. This observation is consistent with afferent drive activating descending facilitation from the RVM, and thus diminishing opioid activity, and may underlie the clinical observation of limited responsiveness of neuropathic pain to opioids


Pain | 1999

Lack of involvement of capsaicin-sensitive primary afferents in nerve-ligation injury induced tactile allodynia in rats

Michael H. Ossipov; Di Bian; T. Philip Malan; Josephine Lai; Frank Porreca

Tactile allodynia and thermal hyperalgesia, two robust signs of neuropathic pain associated with experimental nerve injury, have been hypothesized to be mechanistically distinguished based on (a) fiber types which may be involved in the afferent input, (b) participation of spinal and supraspinal circuitry in these responses, and (c) sensitivity of these endpoints to pharmacological agents. Here, the possibility that nerve-injury induced tactile allodynia and thermal hyperalgesia may be mediated via different afferent fiber input was tested by evaluating these responses in sham-operated or nerve-injured (L5/L6) rats before or after a single systemic injection of resiniferatoxin (RTX), an ultrapotent analogue of the C-fiber specific neurotoxin, capsaicin. Tactile allodynia, and three measures of thermal nociception, tail-flick, paw-flick and hot-plate responses, were determined before and at various intervals for at least 40 days after RTX injection. Nerve-injured, but not sham-operated, rats showed a long-lasting tactile allodynia and thermal hyperalgesia (paw-flick) within 2-3 days after surgery; responses to other noxious thermal stimuli (i.e., tail-flick and hot-plate tests) did not distinguish the two groups at the stimulus intensities employed. RTX treatment resulted in a significant and long-lasting (i.e. essentially irreversible) decrease in sensitivity to thermal noxious stimuli in both sham-operated and nerve-injured rats; thermal hyperalgesia was abolished and antinociception produced by RTX. In contrast, RTX treatment did not affect the tactile allodynia seen in the same nerve-injured rats. These data support the concept that thermal hyperalgesia seen after nerve ligation, as well as noxious thermal stimuli, are likely to be mediated by capsaicin-sensitive C-fiber afferents. In contrast, nerve-injury related tactile allodynia is insensitive to RTX treatment which clearly desensitizes C-fibers and, therefore such responses are not likely to be mediated through C-fiber afferents. The hypothesis that tactile allodynia may be due to inputs from large (i.e. A beta) afferents offers a mechanistic basis for the observed insensitivity of this endpoint to intrathecal morphine in this nerve-injury model. Further, these data suggest that clinical treatment of neuropathic pains with C-fiber specific agents such as capsaicin are unlikely to offer significant therapeutic benefit against mechanical allodynia.


Pain | 1996

Single intrathecal injections of dynorphin A or des-Tyr-dynorphins produce long-lasting allodynia in rats: blockade by MK-801 but not naloxone.

Todd W Vandera; Tinna M. Laughlin; Jason M. Lashbrook; Michael L. Nichols; George L. Wilcox; Michael H. Ossipov; T. Philip Malan; Frank Porreca

&NA; Neuropathic pain states are accompanied by increased sensitivity to both noxious and non‐noxious sensory stimuli, characterized as hyperalgesia and allodynia, respectively. In animal models of neuropathic pain, the presence of hyperalgesia and allodynia are accompanied by neuroplastic changes including increased spinal levels of substance P, cholecystokinin (CCK), and dynorphin. N‐Methyl‐ d‐aspartate (NMDA) receptors appear to be involved in maintaining the central sensitivity which contributes to neuropathic pain. In addition to its opioid activities, dynorphin has been suggested to act at the NMDA receptor complex. In an attempt to mimic the increased levels of spinal dynorphin seen in animal models of neuropathic pain, rats received a single intrathecal (i.t.) injection of dynorphin A(1–17), dynorphin A(1–13), dynorphin A(2–17) or dynorphin A(2–13) through indwelling catheters. Tactile allodynia was determined by measuring response threshold to probing with von Frey filaments. Dynorphin A(1–17) administration evoked significant and long‐lasting tactile allodynia (i.e. > 60 days). Likewise, the i.t. administration of dynorphin A(1–13) or dynorphin A(2–17) or dynorphin A(2–13) also produced long‐lasting tactile allodynia. Intrathecal pretreatment, but not post‐treatment, with MK‐801 prevented dynorphin A(1–17)‐induced development of allodynia; i.t. administration of MK‐801 alone had no effect on responses to tactile stimuli. In contrast, i.t. pretreatment with naloxone did not affect the development of tactile allodynia induced by dynorphin A(1–17) or alter sensory threshold when given alone. These results demonstrate that a single dose of dynorphin A, or its des‐Tyr fragments, produces long‐lasting allodynia which may be irreversible in the rat. Further, this effect appears to be mediated through activation of NMDA, rather than opioid, receptors. While the precise mechanisms underlying the development and maintenance of the allodynia is unclear, it seems possible that dynorphin may produce changes in the spinal cord, which may contribute to the development of signs reminiscent of a ‘neuropathic’ state. Given that levels of dynorphin are elevated following nerve injury, it seems reasonable to speculate that dynorphin may have a pathologically relevant role in neuropathic pain states.


Biopolymers | 2005

Underlying Mechanisms of Pronociceptive Consequences of Prolonged Morphine Exposure

Michael H. Ossipov; Josephine Lai; Tamara King; Todd W. Vanderah; Frank Porreca

The opioid analgesics, commonly exemplified by morphine, represent the best option for the treatment of severe pain and for the management of chronic pain states, of both malignant and nonmalignant origin. It is well recognized that the prolonged use of opioids is associated with a requirement for ever‐increasing doses in order to maintain pain relief at an acceptable and consistent level. This phenomenon is termed analgesic tolerance. While the concept that tolerance can develop as a result of cellular adaptations to the presence of the opioid has been proposed, it is now becoming abundantly clear that tolerance may also be related to a state of hyperalgesia that results from exposure to the opioid itself. Patients who receive long‐term opioid therapy sometimes develop unexpected, abnormal pain. Similar paradoxical opioid‐induced pain has been confirmed in a number of animal studies, even during the period of continuous opioid delivery. A number of recent studies have demonstrated that such pain may be secondary to neuroplastic changes that occur in the brain and spinal cord. One such change may be the activation of descending pain facilitation mechanisms arising from the rostral ventromedial medulla (RVM) elicited in part by increased activity of cholecystokinin (CCK) in the RVM. A cascade of pronociceptive events may follow, such as opioid‐induced upregulation of spinal dynorphin levels that promotes enhanced input from primary afferent nociceptors. This mechanism appears to depend on intact descending pathways from the RVM, since interrupting this pathway abolishes enhanced abnormal pain. Furthermore, extended opioid exposure also can elicit increased calcitonin gene related peptide (CGRP) and substance P expression in the dorsal root ganglia. It is probable that increased pain elicited by opioids is a critical factor in the behavioral manifestation of opioid tolerance because the same manipulations that block abnormal pain also block antinociceptive tolerance. Taken together, such studies show that opioids elicit systems‐level adaptations resulting in pain due to descending facilitation, upregulation of spinal dynorphin, and enhanced, evoked release of excitatory transmitters from primary afferents. These adaptive changes in response to sustained exposure to opioids indicate the need for the evaluation of the clinical consequences of long‐term opioid administration. Additionally, these findings suggest a need for novel chemistry involving design of agents that may counteract opiate‐induced neuroplastic adaptations resulting in pain relief without analgesic tolerance.


Pain | 2003

Reversal of experimental neuropathic pain by T-type calcium channel blockers

Ahmet Dogrul; Luis R. Gardell; Michael H. Ossipov; F. Cankat Tulunay; Josephine Lai; Frank Porreca

Experimental nerve injury results in exaggerated responses to tactile and thermal stimuli that resemble some aspects of human neuropathic pain. Neuronal hyperexcitability and neurotransmitter release have been suggested to promote such increased responses to sensory stimuli. Enhanced activity of Ca2+ current is associated with increased neuronal activity and blockade of N‐ and P‐types, but not L‐type, calcium channels have been found to block experimental neuropathic pain. While T‐type currents are believed to promote neuronal excitability and transmitter release, it is unclear whether these channels may also contribute to the neuropathic state. Rats were prepared with L5/L6 spinal nerve ligation, and tactile and thermal hypersensitivities were established. Mibefradil or ethosuximide was administered either intraperitoneally, intrathecally (i.th.), or locally into the plantar aspect of the injured hindpaw. Systemic mibefradil or ethosuximide produced a dose‐dependent blockade of both tactile and thermal hypersensitivities in nerve‐injured rats; responses of sham‐operated rats were unchanged. Local injection of mibefradil also blocked both end points. Ethosuximide, however, was inactive after local administration, perhaps reflecting its low potency when compared with mibefradil. Neither mibefradil nor ethosuximide given i.th. produced any blockade of neuropathic behaviors. The results presented here suggest that T‐type calcium channels may play a role in the expression of the neuropathic state. The data support the view that selective T‐type calcium channel blockers may have significant potential in the treatment of neuropathic pain states.


Pain | 2000

Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat.

Carl J. Kovelowski; Michael H. Ossipov; H. Sun; Josephine Lai; T. P. Malan; Frank Porreca

&NA; Complete or partial spinal section at T8 has been shown to block tactile allodynia but not thermal hyperalgesia following L5/L6 spinal nerve ligation (SNL), suggesting the supraspinal integration of allodynia in neuropathic pain. In the present study, the possibility of mediation of nerve injury‐associated pain through tonic activity of descending nociceptive facilitation arising from the rostroventromedial medulla (RVM) was investigated. Specifically, the actions of brainstem cholecystokinin and the possible importance of sustained afferent input from injured nerve fibers were determined using pharmacological and physiological approaches in rats with SNL. Lidocaine given bilaterally into the RVM blocked tactile allodynia and thermal hyperalgesia in SNL rats and was inactive in sham‐operated rats. Bilateral injection of L365,260 (CCKB receptor antagonist) into the RVM also reversed both tactile allodynia and thermal hyperalgesia. Microinjection of CCK‐8 (s) into the RVM of naive rats produced a robust tactile allodynic effect and a more modest hyperalgesia. CCK immunoreactivity was not significantly different between SNL and sham‐operated rats. The anti‐nociceptive effect of morphine given into the ventrolateral periaqueductal gray region (PAG) was substantially reduced by SNL. The injection of L365,260 into the RVM or of bupivacaine at the site of nerve injury restored the potency and efficacy of PAG morphine in SNL rats. These results suggest that changes in supraspinal processing are likely to contribute to the observed poor efficacy of opioids in clinical states of neuropathic pain. These data also indicate that the activation of descending nociceptive facilitatory pathways is important in the maintenance of neuropathic pain, appears to be dependent on CCK release, and may be driven from sustained afferent input from injured nerves to brainstem sites. Collectively, these data support the hypothesis that abnormal tonic activity of descending facilitation mechanisms may underlie chronic pain from peripheral nerve injury.


Anesthesia & Analgesia | 1989

Antinociceptive interactions between alpha 2-adrenergic and opiate agonists at the spinal level in rodents.

Michael H. Ossipov; Linda J. Suarez

This study was undertaken to evaluate the antinociceptive interactions of α2 adrenergic and opiate receptors at tin spinal level. Morphine and clonidine were administered, intrathecally (i.t.) by lumbar puncture to rats either alone or in the presence of either i.t. yohimbine, an α2 antagonist, or systemic naloxone, an opioid antagonist. The effect of, tolerance to systematically administered morphine on responses to i.t. morphine and clonidine was examined in mice. Antinociception was determined by observing tin response to a clamp applied to the tail (Haffner test) in mice and by the tail-flick test in rats; log dose-response curves for antinociception were generated for morphine, clonidine, and each drug combination. Morphine and clonidine both produced dose-dependent antinociception when given i.t. in both species. The i.t. administration of yohimbine attenuated the antinociceptive effect of both clonidine and morphine, but naloxone attenuated only the response to morphine. Further, a sub-analgetic dose of i.t. clonidine potentiated the effect of i.t. morphine. In morphine-tolerant mice, i.t. morphine urns not efficacious whereas clonidine retained full efficacy, although potency urns slightly diminished. Thus, it appears that α2 adrenoceptor-mediated antinociception is independent of opiate receptor mechanisms. Clinical use of intrathecal combinations of α2,adrenergic and opiate receptor agonists to increase analgesia and use of intrathecal α2, agonists for pain relief in patients tolerant to opiates might deserve evaluation.


Pain | 2000

Extraterritorial neuropathic pain correlates with multisegmental elevation of spinal dynorphin in nerve-injured rats

T. Philip Malan; Michael H. Ossipov; Luis R. Gardell; Mohab M. Ibrahim; Di Bian; Josephine Lai; Frank Porreca

&NA; Neuropathic pain is often associated with the appearance of pain in regions not related to the injured nerve. One mechanism that may underlie neuropathic pain is abnormal, spontaneous afferent drive which may contribute to NMDA‐mediated central sensitization by the actions of glutamate and by the non‐opioid actions of spinal dynorphin. In the present study, injuries to lumbar or sacral spinal nerves elicited elevation in spinal dynorphin content which correlated temporally and spatially with signs of neuropathic pain. The increase in spinal dynorphin content was coincident with the onset of tactile allodynia and thermal hyperalgesia. Injury to the lumbar (L5/L6) spinal nerves produced elevated spinal dynorphin content in the ipsilateral dorsal spinal quadrant at the L5 and L6 spinal segments and in the segments immediately adjacent. Lumbar nerve injury elicited ipsilateral tactile allodynia and thermal hyperalgesia of the hindpaw. In contrast, S2 spinal nerve ligation elicited elevated dynorphin content in sacral spinal segments and bilaterally in the caudal lumbar spinal cord. The behavioral consequences of S2 spinal nerve ligation were also bilateral, with tactile allodynia and thermal hyperalgesia seen in both hindpaws. Application of lidocaine to the site of S2 ligation blocked thermal hyperalgesia and tactile allodynia of the hindpaws suggesting that afferent drive was critical to maintenance of the pain state. Spinal injection of antiserum to dynorphin A(1–17) and of MK‐801 both blocked thermal hyperalgesia, but not tactile allodynia, of the hindpaw after S2 ligation. These data suggest that the elevated spinal dynorphin content consequent to peripheral nerve injury may drive sensitization of the spinal cord, in part through dynorphin acting directly or indirectly on the NMDA receptor complex. Furthermore, extrasegmental increases in spinal dynorphin content may partly underlie the development of extraterritorial neuropathic pain.


Neuroreport | 1995

Characterization of the antiallodynic efficacy of morphine in a model of neuropathic pain in rats.

Di Bian; Michael L. Nichols; Michael H. Ossipov; Josephine Lai; Frank Porreca

Neuropathic pains have often been classified as opioid resistant. Here, the ability of systemic (i.p.), intracerebroventricular (i.c.v.) and intrathecal (i.th.) morphine to inhibit mechanical allodynia were studied in a nerve ligation (L5, L6 nerve roots) model of neuropathic pain in rats. Morphine administered i.p. or i.c.v. produced dose-dependent antiallodynia which was readily antagonized by naloxone (5 mg kg-1, i.p. at -10 min). In contrast, i.th. morphine at doses up to 100 micrograms was without effect. These data suggest that the failure of i.th. morphine to produce antiallodynic effects may be due, in part, to the lack of available functional spinal opioid mu-receptors which may occur following nerve injury. In contrast, the antiallodynic actions of i.p. or i.c.v. morphine appear to depend on supraspinal activation of opioid (mu?) receptors and subsequent activation of descending modulatory systems. The inconsistent data seen clinically with morphine in neuropathic pains may be related to the lack of supraspinal/spinal synergy that is normally associated with morphine efficacy in conditions of acute pain.

Collaboration


Dive into the Michael H. Ossipov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Di Bian

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge