Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael H. Serrano-Wu is active.

Publication


Featured researches published by Michael H. Serrano-Wu.


Nature | 2010

Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect

Min Gao; Richard E. Nettles; Makonen Belema; Lawrence B. Snyder; Van N. Nguyen; Robert A. Fridell; Michael H. Serrano-Wu; David R. Langley; Jin-Hua Sun; Donald R. O'Boyle; Julie A. Lemm; Chunfu Wang; Jay O. Knipe; Caly Chien; Richard J. Colonno; Dennis M. Grasela; Nicholas A. Meanwell; Lawrence G. Hamann

The worldwide prevalence of chronic hepatitis C virus (HCV) infection is estimated to be approaching 200 million people. Current therapy relies upon a combination of pegylated interferon-α and ribavirin, a poorly tolerated regimen typically associated with less than 50% sustained virological response rate in those infected with genotype 1 virus. The development of direct-acting antiviral agents to treat HCV has focused predominantly on inhibitors of the viral enzymes NS3 protease and the RNA-dependent RNA polymerase NS5B. Here we describe the profile of BMS-790052, a small molecule inhibitor of the HCV NS5A protein that exhibits picomolar half-maximum effective concentrations (EC50) towards replicons expressing a broad range of HCV genotypes and the JFH-1 genotype 2a infectious virus in cell culture. In a phase I clinical trial in patients chronically infected with HCV, administration of a single 100-mg dose of BMS-790052 was associated with a 3.3 log10 reduction in mean viral load measured 24 h post-dose that was sustained for an additional 120 h in two patients infected with genotype 1b virus. Genotypic analysis of samples taken at baseline, 24 and 144 h post-dose revealed that the major HCV variants observed had substitutions at amino-acid positions identified using the in vitro replicon system. These results provide the first clinical validation of an inhibitor of HCV NS5A, a protein with no known enzymatic function, as an approach to the suppression of virus replication that offers potential as part of a therapeutic regimen based on combinations of HCV inhibitors.


Journal of Virology | 2010

Identification of Hepatitis C Virus NS5A Inhibitors

Julie A. Lemm; Donald R. O'Boyle; Mengping Liu; Peter T. Nower; Richard J. Colonno; Milind Deshpande; Lawrence B. Snyder; Scott Martin; Denis R. St. Laurent; Michael H. Serrano-Wu; Jeffrey L. Romine; Nicholas A. Meanwell; Min Gao

ABSTRACT Using a cell-based replicon screen, we identified a class of compounds with a thiazolidinone core structure as inhibitors of hepatitis C virus (HCV) replication. The concentration of one such compound, BMS-824, that resulted in a 50% inhibition of HCV replicon replication was ∼5 nM, with a therapeutic index of >10,000. The compound showed good specificity for HCV, as it was not active against several other RNA and DNA viruses. Replicon cells resistant to BMS-824 were isolated, and mutations were identified. A combination of amino acid substitutions of leucine to valine at residue 31 (L31V) and glutamine to leucine at residue 54 (Q54L) in NS5A conferred resistance to this chemotype, as did a single substitution of tyrosine to histidine at amino acid 93 (Y93H) in NS5A. To further explore the region(s) of NS5A involved in inhibitor sensitivity, genotype-specific NS5A inhibitors were used to evaluate a series of genotype 1a/1b hybrid replicons. Our results showed that, consistent with resistance mapping, the inhibitor sensitivity domain also mapped to the N terminus of NS5A, but it could be distinguished from the key resistance sites. In addition, we demonstrated that NS5A inhibitors, as well as an active-site inhibitor that specifically binds NS3 protease, could block the hyperphosphorylation of NS5A, which is believed to play an essential role in the viral life cycle. Clinical proof of concept has recently been achieved with derivatives of these NS5A inhibitors, indicating that small molecules targeting a nontraditional viral protein like NS5A, without any known enzymatic activity, can also have profound antiviral effects on HCV-infected subjects.


ACS Medicinal Chemistry Letters | 2011

Inhibitors of HCV NS5A: From Iminothiazolidinones to Symmetrical Stilbenes

Jeffrey L. Romine; Denis R. St. Laurent; John E. Leet; Scott Martin; Michael H. Serrano-Wu; Fukang Yang; Min Gao; Donald R. O’Boyle; Julie A. Lemm; Jin-Hua Sun; Peter T. Nower; Milind Deshpande; Nicholas A. Meanwell; Lawrence B. Snyder

The iminothiazolidinone BMS-858 (2) was identified as a specific inhibitor of HCV replication in a genotype 1b replicon assay via a high-throughput screening campaign. A more potent analogue, BMS-824 (18), was used in resistance mapping studies, which revealed that inhibitory activity was related to disrupting the function of the HCV nonstructural protein 5A. Despite the development of coherent and interpretable SAR, it was subsequently discovered that in DMSO 18 underwent an oxidation and structural rearrangement to afford the thiohydantoin 47, a compound with reduced HCV inhibitory activity. However, HPLC bioassay fractionation studies performed after incubation of 18 in assay media led to the identification of fractions containing a dimeric species 48 that exhibited potent antiviral activity. Excision of the key elements hypothesized to be responsible for antiviral activity based on SAR observations reduced 48 to a simplified, symmetrical, pharmacophore realized most effectively with the stilbene 55, a compound that demonstrated potent inhibition of HCV in a genotype 1b replicon with an EC50 = 86 pM.


Bioorganic & Medicinal Chemistry Letters | 2003

Sordaricin antifungal agents

Claude A. Quesnelle; Patrice Gill; Marco Dodier; Denis R. St. Laurent; Michael H. Serrano-Wu; Anne Marinier; Alain Martel; Charles E. Mazzucco; Terry M. Stickle; John F. Barrett; Dolatrai M. Vyas; Balu Balasubramanian

Compounds based on sordaricin were prepared via organometallic addition onto a fully protected sordaricin aldehyde. The fungal growth inhibition profiles for these compounds were established and the results are presented here. The synthesis of homologated sordaricin as well as ether and ester derivatives is presented, and structural rearrangement products upon oxidation. These compounds were evaluated as agents to inhibit fungal growth.


Journal of Medicinal Chemistry | 2014

HCV NS5A Replication Complex Inhibitors. Part 4.1 Optimization for Genotype 1a Replicon Inhibitory Activity

Denis R. St. Laurent; Michael H. Serrano-Wu; Makonen Belema; Min Ding; Hua Fang; Min Gao; Jason Goodrich; Rudolph G. Krause; Julie A. Lemm; Mengping Liu; Omar D. Lopez; Van N. Nguyen; Peter T. Nower; Donald R. O’Boyle; Bradley C. Pearce; Jeffrey L. Romine; Lourdes Valera; Jin-Hua Sun; Ying-Kai Wang; Fukang Yang; Xuejie Yang; Nicholas A. Meanwell; Lawrence B. Snyder

A series of symmetrical E-stilbene prolinamides that originated from the library-synthesized lead 3 was studied with respect to HCV genotype 1a (G-1a) and genotype 1b (G-1b) replicon inhibition and selectivity against BVDV and cytotoxicity. SAR emerging from an examination of the prolinamide cap region revealed 11 to be a selective HCV NS5A inhibitor exhibiting submicromolar potency against both G-1a and G-1b replicons. Additional structural refinements resulted in the identification of 30 as a potent, dual G-1a/1b HCV NS5A inhibitor.


Bioorganic & Medicinal Chemistry Letters | 2012

HCV NS5A replication complex inhibitors. Part 2: investigation of stilbene prolinamides.

Denis R. St. Laurent; Makonen Belema; Min Gao; Jason Goodrich; Ramesh Kakarla; Jay O. Knipe; Julie A. Lemm; Mengping Liu; Omar D. Lopez; Van N. Nguyen; Peter T. Nower; Donald R. O’Boyle; Yuping Qiu; Jeffrey L. Romine; Michael H. Serrano-Wu; Jin-Hua Sun; Lourdes Valera; Fukang Yang; Xuejie Yang; Nicholas A. Meanwell; Lawrence B. Snyder

In a previous disclosure,(1) we reported the dimerization of an iminothiazolidinone to form 1, a contributor to the observed inhibition of HCV genotype 1b replicon activity. The dimer was isolated via bioassay-guided fractionation experiments and shown to be a potent inhibitor of genotype 1b HCV replication for which resistance mapped to the NS5A protein. The elements responsible for governing HCV inhibitory activity were successfully captured in the structurally simplified stilbene prolinamide 2. We describe herein the early SAR and profiling associated with stilbene prolinamides that culminated in the identification of analogs with PK properties sufficient to warrant continued commitment to this chemotype. These studies represent the key initial steps toward the discovery of daclatasvir (BMS-790052), a compound that has demonstrated clinical proof-of-concept for inhibiting the NS5A replication complex in the treatment of HCV infection.


Bioorganic & Medicinal Chemistry Letters | 2013

HCV NS5A replication complex inhibitors. Part 3: discovery of potent analogs with distinct core topologies

Omar D. Lopez; Van N. Nguyen; Denis R. St. Laurent; Makonen Belema; Michael H. Serrano-Wu; Jason Goodrich; Fukang Yang; Yuping Qiu; Amy Ripka; Peter T. Nower; Lourdes Valera; Mengping Liu; Donald R. O’Boyle; Jin-Hua Sun; Robert A. Fridell; Julie A. Lemm; Min Gao; Andrew C. Good; Nicholas A. Meanwell; Lawrence B. Snyder

In a recent disclosure, we described the discovery of dimeric, prolinamide-based NS5A replication complex inhibitors exhibiting excellent potency towards an HCV genotype 1b replicon. That disclosure dealt with the SAR exploration of the peripheral region of our lead chemotype, and herein is described the SAR uncovered from a complementary effort that focused on the central core region. From this effort, the contribution of the core region to the overall topology of the pharmacophore, primarily vector orientation and planarity, was determined, with a set of analogs exhibiting <10 nM EC(50) in a genotype 1b replicon assay.


Bioorganic & Medicinal Chemistry Letters | 2002

Sordarin oxazepine derivatives as potent antifungal agents

Michael H. Serrano-Wu; Denis R. St. Laurent; Yijun Chen; Stella Huang; Kin-Ray Lam; James A. Matson; Charles E. Mazzucco; Terry M. Stickle; Henry S. Wong; Dolatrai M. Vyas; Balu Balasubramanian

The synthesis and biological activity of sordarin oxazepine derivatives are described. The key step features a regioselective oxidation of an unprotected triol followed by double reductive amination to afford the ring-closed products. The spectrum of antifungal activity for these novel derivatives includes coverage of Candida albicans, Candida glabrata, and Cryptococcus neoformans.


Bioorganic & Medicinal Chemistry Letters | 2002

Oxime derivatives of sordaricin as potent antifungal agents

Michael H. Serrano-Wu; Denis R. St. Laurent; Charles E. Mazzucco; Terry M. Stickle; John F. Barrett; Dolatrai M. Vyas; Balu Balasubramanian

Oxime derivatives of the sordarin aglycone have been identified as potent antifungal agents. The in vitro spectrum of activity includes coverage against Candida albicans and Candida glabrata with MICs as low as 0.06 microg/mL. The antifungal activity was established to be exquisitely sensitive to the spatial orientation of the lipophilic side chains.


ACS Medicinal Chemistry Letters | 2012

Intestinally Targeted Diacylglycerol Acyltransferase 1 (DGAT1) Inhibitors Robustly Suppress Postprandial Triglycerides.

Michael H. Serrano-Wu; Gary M. Coppola; Yongjin Gong; Alan D. Neubert; Ricardo E. Chatelain; Kevin B. Clairmont; Renee Commerford; Theresa Cosker; Thomas Daniels; Ying Hou; Monish Jain; Marlene Juedes; Lisha Li; Tara L. Mullarkey; Erik C. Rocheford; Moo Je Sung; Andrew Tyler; Qing Yang; Taeyoung Yoon; Brian K. Hubbard

High DGAT1 expression levels in the small intestine highlight the critical role this enzyme plays in nutrient absorption. Identification of inhibitors which predominantly inhibit DGAT1 in the gut is an attractive drug discovery strategy with anticipated benefits of reduced systemic toxicity. In this report we describe our discovery and optimization of DGAT1 inhibitors whose plasma exposure is minimized by the action of transporters, including the P-glycoprotein transporter. The impact of this unique absorption profile on efficacy in rat and dog efficacy models is presented.

Collaboration


Dive into the Michael H. Serrano-Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Gao

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge