Michael H. Sims
Ames Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael H. Sims.
Photogrammetric Engineering and Remote Sensing | 2005
Rongxing Li; Steven W. Squyres; Raymond E. Arvidson; Brent A. Archinal; James F. Bell; Yang Cheng; Larry S. Crumpler; David J. Des Marais; Kaichang Di; Todd Ely; Matthew P. Golombek; Eric Graat; John A. Grant; Joe Guinn; Andrew Edie Johnson; Ronald Greeley; Randolph L. Kirk; Mark W. Maimone; Larry H. Matthies; M. C. Malin; T. J. Parker; Michael H. Sims; Larry Soderblom; Shane D. Thompson; Jue Wang; P. L. Whelley; Fengliang Xu
This paper presents the initial results of lander and rover localization and topographic mapping of the MER 2003 mission (by Sol 225 for Spirit and Sol 206 for Opportunity). The Spirit rover has traversed a distance of 3.2 km (actual distance traveled instead of odometry) and Opportunity at 1.2 km. We localized the landers in the Gusev Crater and on the Meridiani Planum using two-way Doppler radio positioning technology and cartographic triangulations through landmarks visible in both orbital and ground images. Additional high-resolution orbital images were taken to verify the determined lander positions. Visual odometry and bundleadjustment technologies were applied to overcome wheel slippages, azimuthal angle drift and other navigation errors (as large as 21 percent). We generated timely topographic products including 68 orthophoto maps and 3D Digital Terrain Models, eight horizontal rover traverse maps, vertical traverse profiles up to Sol 214 for Spirit and Sol 62 for
Journal of Geophysical Research | 2006
K. E. Herkenhoff; S. W. Squyres; Robert S. Anderson; Brent A. Archinal; Raymond E. Arvidson; J. M. Barrett; Kris J. Becker; James F. Bell; Charles John Budney; Nathalie A. Cabrol; Mary G. Chapman; Debbie Cook; Bethany L. Ehlmann; Jack D. Farmer; Brenda J. Franklin; Lisa R. Gaddis; D. M. Galuszka; Patricia Garcia; Trent M. Hare; Elpitha Howington-Kraus; Jeffrey R. Johnson; Sarah Stewart Johnson; K. M. Kinch; Randolph L. Kirk; Ella Mae Lee; Craig Leff; Mark T. Lemmon; M. B. Madsen; J. N. Maki; Kevin F. Mullins
The Microscopic Imager (MI) on the Mars Exploration Rover Spirit has returned images of Mars with higher resolution than any previous camera system, allowing detailed petrographic and sedimentological studies of the rocks and soils at the Gusev landing site. Designed to simulate a geologists hand lens, the MI is mounted on Spirits instrument arm and can resolve objects 0.1 mm in size or larger. This paper provides an overview of MI operations, data calibration, processing, and analysis of MI data returned during the first 450 sols (Mars days) of the Spirit landed mission. The primary goal of this paper is to facilitate further analyses of MI data by summarizing the methods used to acquire and process the data, the radiometric and geometric accuracy of MI data products, and the availability of archival products. In addition, scientific results of the MI investigation are summarized. MI observations show that poorly sorted soils are common in Gusev crater, although aeolian bedforms have well-sorted coarse sand grains on their surfaces. Abraded surfaces of plains rocks show igneous textures, light-toned veins or fracture-filling minerals, and discrete coatings. The rocks in the Columbia Hills have a wide variety of granular textures, consistent with volcaniclastic or impact origins. Case hardening and submillimeter veins observed in the rocks as well as soil crusts and cemented clods imply episodic subsurface aqueous fluid movement, which has altered multiple geologic units in the Columbia Hills. The MI also monitored Spirits solar panels and the magnets on the rovers deck.
Journal of Management Information Systems | 2003
Maarten Sierhuis; William J. Clancey; Chin Seah; Jay Trimble; Michael H. Sims
Work system analysis and design is complex and nondeterministic. In this paper we describe Brahms, a multiagent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms was originally conceived as a business process design tool that simulates work practices, including social systems of work. We describe our modeling and simulation method for mission operations work systems design, based on a research case study in which we used Brahms to design mission operations for a proposed discovery mission to the Moon. We then describe the results of an actual method application project - the Brahms Mars Exploration Rover. Space mission operations are similar to operations of traditional organizations; we show that the application of Brahms for space mission operations design is relevant and transferable to other types of business processes in organizations.
Geology | 2005
Larry S. Crumpler; Steven W. Squyres; Raymond E. Arvidson; James F. Bell; Diana L. Blaney; Nathalie A. Cabrol; Philip R. Christensen; David J. DesMarais; Jack D. Farmer; R. L. Fergason; Matthew P. Golombek; Frederick D. Grant; John A. Grant; Ronald Greeley; Brian C. Hahn; Kenneth E. Herkenhoff; Joel A. Hurowitz; Amy T. Knudson; Geoffrey A. Landis; Rongxing Li; J. N. Maki; Harry Y. McSween; Douglas W. Ming; Jeff Moersch; Meredith C. Payne; James R Rice; L. Richter; Steven W. Ruff; Michael H. Sims; Shane D. Thompson
The Spirit rover completed a 2.5 km traverse across gently sloping plains on the floor of Gusev crater from its location on the outer rim of Bonneville crater to the lower slopes of the Columbia Hills, Mars. Using the Athena suite of instruments in a transect approach, a systematic series of overlapping panoramic mosaics, remote sensing observations, surface analyses, and trenching operations documented the lateral variations in landforms, geologic materials, and chemistry of the surface throughout the traverse, demonstrating the ability to apply the techniques of field geology by remote rover operations. Textures and shapes of rocks within the plains are consistent with derivation from impact excavation and mixing of the upper few meters of basaltic lavas. The contact between surrounding plains and crater ejecta is generally abrupt and marked by increases in clast abundance and decimeter-scale steps in relief. Basaltic materials of the plains overlie less indurated and more altered rock types at a time-stratigraphic contact between the plains and Columbia Hills that occurs over a distance of one to two meters. This implies that regional geologic contacts are well preserved and that Earth-like field geologic mapping will be possible on Mars despite eons of overturn by small impacts.
Journal of Geophysical Research | 2008
K. E. Herkenhoff; John P. Grotzinger; Andrew H. Knoll; Scott M. McLennan; Catherine M. Weitz; Aileen Yingst; Robert S. Anderson; Brent A. Archinal; Raymond E. Arvidson; J. M. Barrett; Kris J. Becker; James F. Bell; Charles John Budney; Mary G. Chapman; Debbie Cook; B. L. Ehlmann; Brenda J. Franklin; Lisa R. Gaddis; D. M. Galuszka; Patricia Garcia; Paul Geissler; Trent M. Hare; Elpitha Howington-Kraus; Jeffrey R. Johnson; Laszlo P. Keszthelyi; Randolph L. Kirk; Peter Denham Lanagan; Ella Mae Lee; Craig Leff; J. N. Maki
The Microscopic Imager (MI) on the Mars Exploration Rover Opportunity has returned images of Mars with higher resolution than any previous camera system, allowing detailed petrographic and sedimentological studies of the rocks and soils at the Meridiani Planum landing site. Designed to simulate a geologists hand lens, the MI is mounted on Opportunitys instrument arm and can resolve objects 0.1 mm across or larger. This paper provides an overview of MI operations, data calibration, and analysis of MI data returned during the first 900 sols (Mars days) of the Opportunity landed mission. Analyses of Opportunity MI data have helped to resolve major questions about the origin of observed textures and features. These studies support eolian sediment transport, rather than impact surge processes, as the dominant depositional mechanism for Burns formation strata. MI stereo observations of a rock outcrop near the rim of Erebus Crater support the previous interpretation of similar sedimentary structures in Eagle Crater as being formed by surficial flow of liquid water. Well-sorted spherules dominate ripple surfaces on the Meridiani plains, and the size of spherules between ripples decreases by about 1 mm from north to south along Opportunitys traverse between Endurance and Erebus craters.
systems, man and cybernetics | 2005
Laurence J. Edwards; Michael H. Sims; Clayton Kunz; David Lees; Judd D. Bowman
Modern NASA planetary exploration missions employ complex systems of hardware and software managed by large teams of engineers and scientists in order to study remote environments. The most complex and successful of these recent projects is the Mars Exploration Rover mission. The Computational Sciences Division at NASA Ames Research Center delivered a 3D visualization program, Viz, to the MER mission that provides an immersive, interactive environment for science analysis of the remote planetary surface. In addition, Ames provided the Athena Science Team with high-quality terrain reconstructions generated with the Ames Stereo-pipeline. The on-site support team for these software systems responded to unanticipated opportunities to generate 3D terrain models during the primary MER mission. This paper describes Viz, the Stereo-pipeline, and the experiences of the on-site team supporting the scientists at JPL during the primary MER mission
Journal of Geophysical Research | 2008
Rongxing Li; Bo Wu; Kaichang Di; Anelia Angelova; Raymond E. Arvidson; I-Chieh Lee; Mark W. Maimone; Larry H. Matthies; Lutz Richer; Robert J. Sullivan; Michael H. Sims; Rebecca Greenberger; Steven W. Squyres
Spirit rover experienced significant slips traversing Husband Hill. This paper analyzes the slippage Spirit experienced from Sol 154 to Sol 737. Slippage with respect to terrain type and slope is computed using data downlinked from the rover, rover position, and orientation estimations from visual odometry (VO) and photogrammetry based bundle adjustment (BA) method. Accumulated slippage reached a maximum of 83.86 m on Sol 648. However, as Spirit descended into the Inner Basin, the direction of slippage reversed, and accumulated slippage approached zero by the end of the entire traverse. Eight local regions with significant slips and nineteen traverse segments have been analyzed. Slippage was found to be highly correlated to slope direction and magnitude; the reverse of slope directions in the ascending and descending portions of the traverse proves to be the main contributor to the observed cancellation of slippage. While the horizontal component of the slippage almost canceled out, the difference in elevation continually accumulated, mainly during the ascent. In general, long traverse segments created more slips than short ones. This is reflected in both the accumulated and individual slippages. In considering the four major Mars terrain types, Spirit performed best on bedrock, managing to drive on slopes close to 30°. Fine-grain surfaces were the most challenging; though progress was made on slopes up to 15°, slippages of over 100% (more slippage than distance traveled) occurred for short segments. The results of this work can be incorporate into a traverse planning framework in which rover slippage is minimized. Results can be employed in landed planetary missions for precision navigation to avoid potentially dangerous regions by considering expected slippage.
hawaii international conference on system sciences | 2002
Maarten Sierhuis; William J. Clancey; Michael H. Sims
This paper describes a collaborative multiagent modeling and simulation approach for designing work systems. The Brahms environment is used to model mission operations for a semi-autonomous robot mission to the Moon at the work practice level. It shows the impact of human-decision making on the activities and energy consumption of a robot. A collaborative work systems design methodology is described that allows informal models, created with users and stakeholders, to be used as input to the development of formal computational models.
international conference on machine learning | 1989
Michael H. Sims; John L. Bresina
ABSTRACT In the context of IL, a discovery system for mathematics, we describe our implementation of a general method, Generate, Prune, and Prove (GPP), for the discovery of mathematical operator definitions. This discovery process is driven by the intended purpose of the created operator. The GPP method is general with respect to the operators definition language, the specific operators, and the specified purpose of the operator. We illustrate GPP with one of our case studies - the discovery of the definition of the multiplicative operator for complex numbers.
electronic imaging | 1997
Geb W. Thomas; Theodore T. Blackmon; Michael H. Sims; Daryl Rassmussen
Some applications require a user to consider both geometric and image information. Consider, for example, an interface that presents both a three-dimensional model of an object, built from a CAD model or laser-range data, and an image of the same object, gathered from a surveillance camera or a carefully calibrated photograph. The easiest way to provide these information sets to a user is in separate, side-by-side displays. A more effective alternative combines both types of information in a single, integrated display by projecting the image onto the model. A perspective transformation that assigns image coordinates to model vertices can visually engrave the image onto corresponding surfaces of the model. Combining the image and geometric information in this manner provides several advantages. It allows an operator to visually confirm the accuracy of the modeling geometry and also provides realistic textures for the geometric model. We discuss several of our procedural methods to implement the integrated displays and discuss the benefits gained from applying these techniques to projects including robotic hazardous waste remediation, the virtual exploration of Mars, and remote mobile robot control.