Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael H. Stewart is active.

Publication


Featured researches published by Michael H. Stewart.


Chemical Reviews | 2013

Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology

Kim E. Sapsford; W. Russ Algar; Lorenzo Berti; Kelly Boeneman Gemmill; Brendan J. Casey; Eunkeu Oh; Michael H. Stewart; Igor L. Medintz

Chemistries that Facilitate Nanotechnology Kim E. Sapsford,† W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill,‡ Brendan J. Casey,† Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz*,‡ †Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States ‡Center for Bio/Molecular Science and Engineering Code 6900 and Division of Optical Sciences Code 5611, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States College of Science, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, United States Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California 95817, United States Sotera Defense Solutions, Crofton, Maryland 21114, United States


Bioconjugate Chemistry | 2011

The Controlled Display of Biomolecules on Nanoparticles: A Challenge Suited to Bioorthogonal Chemistry

W. Russ Algar; Duane E. Prasuhn; Michael H. Stewart; Travis L. Jennings; Juan B. Blanco-Canosa; Philip E. Dawson; Igor L. Medintz

Interest in developing diverse nanoparticle (NP)-biological composite materials continues to grow almost unabated. This is motivated primarily by the desire to simultaneously exploit the properties of both NP and biological components in new hybrid devices or materials that can be applied in areas ranging from energy harvesting and nanoscale electronics to biomedical diagnostics. The utility and effectiveness of these composites will be predicated on the ability to assemble these structures with control over NP/biomolecule ratio, biomolecular orientation, biomolecular activity, and the separation distance within the NP-bioconjugate architecture. This degree of control will be especially critical in creating theranostic NP-bioconjugates that, as a single vector, are capable of multiple functions in vivo, including targeting, image contrast, biosensing, and drug delivery. In this review, a perspective is given on current and developing chemistries that can provide improved control in the preparation of NP-bioconjugates. The nanoscale properties intrinsic to several prominent NP materials are briefly described to highlight the motivation behind their use. NP materials of interest include quantum dots, carbon nanotubes, viral capsids, liposomes, and NPs composed of gold, lanthanides, silica, polymers, or magnetic materials. This review includes a critical discussion on the design considerations for NP-bioconjugates and the unique challenges associated with chemistry at the biological-nanoscale interface-the liabilities of traditional bioconjugation chemistries being particularly prominent therein. Select bioorthogonal chemistries that can address these challenges are reviewed in detail, and include chemoselective ligations (e.g., hydrazone and Staudinger ligation), cycloaddition reactions in click chemistry (e.g., azide-alkyne cyclyoaddition, tetrazine ligation), metal-affinity coordination (e.g., polyhistidine), enzyme driven modifications (e.g., HaloTag, biotin ligase), and other site-specific chemistries. The benefits and liabilities of particular chemistries are discussed by highlighting relevant NP-bioconjugation examples from the literature. Potential chemistries that have not yet been applied to NPs are also discussed, and an outlook on future developments in this field is given.


Nature Materials | 2010

Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing

Igor L. Medintz; Michael H. Stewart; Scott A. Trammell; Kimihiro Susumu; James B. Delehanty; Bing C. Mei; Joseph S. Melinger; Juan B. Blanco-Canosa; Philip E. Dawson; Hedi Mattoussi

The use of semiconductor quantum dots (QDs) for bioimaging and sensing has progressively matured over the past decade. QDs are highly sensitive to charge-transfer processes, which can alter their optical properties. Here, we demonstrate that QD-dopamine-peptide bioconjugates can function as charge-transfer coupled pH sensors. Dopamine is normally characterized by two intrinsic redox properties: a Nernstian dependence of formal potential on pH and oxidation of hydroquinone to quinone by O(2) at basic pH. We show that the latter quinone can function as an electron acceptor quenching QD photoluminescence in a manner that depends directly on pH. We characterize the pH-dependent QD quenching using both electrochemistry and spectroscopy. QD-dopamine conjugates were also used as pH sensors that measured changes in cytoplasmic pH as cells underwent drug-induced alkalosis. A detailed mechanism describing the QD quenching processes that is consistent with dopamines inherent redox chemistry is presented.


Journal of the American Chemical Society | 2012

Quantum Dots as Simultaneous Acceptors and Donors in Time-Gated Förster Resonance Energy Transfer Relays: Characterization and Biosensing

W. Russ Algar; David Wegner; Alan L. Huston; Juan B. Blanco-Canosa; Michael H. Stewart; Anika Armstrong; Philip E. Dawson; Niko Hildebrandt; Igor L. Medintz

The unique photophysical properties of semiconductor quantum dot (QD) bioconjugates offer many advantages for active sensing, imaging, and optical diagnostics. In particular, QDs have been widely adopted as either donors or acceptors in Förster resonance energy transfer (FRET)-based assays and biosensors. Here, we expand their utility by demonstrating that QDs can function in a simultaneous role as acceptors and donors within time-gated FRET relays. To achieve this configuration, the QD was used as a central nanoplatform and coassembled with peptides or oligonucleotides that were labeled with either a long lifetime luminescent terbium(III) complex (Tb) or a fluorescent dye, Alexa Fluor 647 (A647). Within the FRET relay, the QD served as a critical intermediary where (1) an excited-state Tb donor transferred energy to the ground-state QD following a suitable microsecond delay and (2) the QD subsequently transferred that energy to an A647 acceptor. A detailed photophysical analysis was undertaken for each step of the FRET relay. The assembly of increasing ratios of Tb/QD was found to linearly increase the magnitude of the FRET-sensitized time-gated QD photoluminescence intensity. Importantly, the Tb was found to sensitize the subsequent QD-A647 donor-acceptor FRET pair without significantly affecting the intrinsic energy transfer efficiency within the second step in the relay. The utility of incorporating QDs into this type of time-gated energy transfer configuration was demonstrated in prototypical bioassays for monitoring protease activity and nucleic acid hybridization; the latter included a dual target format where each orthogonal FRET step transduced a separate binding event. Potential benefits of this time-gated FRET approach include: eliminating background fluorescence, accessing two approximately independent FRET mechanisms in a single QD-bioconjugate, and multiplexed biosensing based on spectrotemporal resolution of QD-FRET without requiring multiple colors of QD.


Journal of the American Chemical Society | 2010

Multidentate Poly(ethylene glycol) Ligands Provide Colloidal Stability to Semiconductor and Metallic Nanocrystals in Extreme Conditions

Michael H. Stewart; Kimihiro Susumu; Bing C. Mei; Igor L. Medintz; James B. Delehanty; Juan B. Blanco-Canosa; Philip E. Dawson; Hedi Mattoussi

We present the design and synthesis of a new set of poly(ethylene glycol) (PEG)-based ligands appended with multidentate anchoring groups and test their ability to provide colloidal stability to semiconductor quantum dots (QDs) and gold nanoparticles (AuNPs) in extreme buffer conditions. The ligands are made of a PEG segment appended with two thioctic acid (TA) or two dihydrolipoic acid (DHLA) anchoring groups, bis(TA)-PEG-OCH(3) or bis(DHLA)-PEG-OCH(3). The synthesis utilizes Michael addition to create a branch point at the end of a PEG chain combined with carbodiimide-coupling to attach two TA groups per PEG chain. Dispersions of CdSe-ZnS core-shell QDs and AuNPs with remarkable long-term colloidal stability at pHs ranging from 1.1 to 13.9 and in the presence of 2 M NaCl have been prepared and tested using these ligands. AuNPs with strong resistance to competition from dithiothreitol (as high as 1.5 M) have also been prepared. This opens up possibilities for using them as stable probes in a variety of bio-related studies where resistance to degradation at extreme pHs, at high electrolyte concentration, and in thiol-rich environments is highly desirable. The improved colloidal stability of nanocrystals afforded by the tetradentate ligands was further demonstrated via the assembly of stable QD-nuclear localization signal peptide bioconjugates that promoted intracellular uptake.


ACS Nano | 2010

Quantum Dot Peptide Biosensors for Monitoring Caspase 3 Proteolysis and Calcium Ions

Duane E. Prasuhn; Anne Feltz; Juan B. Blanco-Canosa; Kimihiro Susumu; Michael H. Stewart; Bing C. Mei; Aleksey Yakovlev; Christina Loukou; Jean-Maurice Mallet; Martin Oheim; Philip E. Dawson; Igor L. Medintz

The nanoscale size and unique optical properties of semiconductor quantum dots (QDs) have made them attractive as central photoluminescent scaffolds for a variety of biosensing platforms. In this report we functionalize QDs with dye-labeled peptides using two different linkage chemistries to yield Förster resonance energy transfer (FRET)-based sensors capable of monitoring either enzymatic activity or ionic presence. The first sensor targets the proteolytic activity of caspase 3, a key downstream effector of apoptosis. This QD conjugate utilized carbodiimide chemistry to covalently link dye-labeled peptide substrates to the terminal carboxyl groups on the QDs surface hydrophilic ligands in a quantitative manner. Caspase 3 cleaved the peptide substrate and disrupted QD donor-dye acceptor FRET providing signal transduction of enzymatic activity and allowing derivation of relevant Michaelis-Menten kinetic descriptors. The second sensor was designed to monitor Ca2+ ions that are ubiquitous in many biological processes. For this sensor, Cu+-catalyzed [3 + 2] azide-alkyne cycloaddition was exploited to attach a recently developed azide-functionalized CalciumRuby-Cl indicator dye to a cognate alkyne group present on the terminus of a modified peptide. The labeled peptide also expressed a polyhistidine sequence, which facilitated its subsequent metal-affinity coordination to the QD surface establishing the final FRET sensing construct. Adding exogenous Ca2+ to the sensor solution increased the dyes fluorescence, altering the donor-acceptor emission ratio and manifested a dissociation constant similar to that of the native dye. These results highlight the potential for combining peptides with QDs using different chemistries to create sensors for monitoring chemical compounds and biological processes.


ACS Nano | 2010

Quantum Dot DNA Bioconjugates: Attachment Chemistry Strongly Influences the Resulting Composite Architecture

Kelly Boeneman; Jeffrey R. Deschamps; Susan Buckhout-White; Duane E. Prasuhn; Juan B. Blanco-Canosa; Philip E. Dawson; Michael H. Stewart; Kimihiro Susumu; Ellen R. Goldman; Mario G. Ancona; Igor L. Medintz

The unique properties provided by hybrid semiconductor quantum dot (QD) bioconjugates continue to stimulate interest for many applications ranging from biosensing to energy harvesting. Understanding both the structure and function of these composite materials is an important component in their development. Here, we compare the architecture that results from using two common self-assembly chemistries to attach DNA to QDs. DNA modified to display either a terminal biotin or an oligohistidine peptidyl sequence was assembled to streptavidin/amphiphilic polymer- or PEG-functionalized QDs, respectively. A series of complementary acceptor dye-labeled DNA were hybridized to different positions on the DNA in each QD configuration and the separation distances between the QD donor and each dye-acceptor probed with Förster resonance energy transfer (FRET). The polyhistidine self-assembly yielded QD-DNA bioconjugates where predicted and experimental separation distances matched reasonably well. Although displaying efficient FRET, data from QD-DNA bioconjugates assembled using biotin-streptavidin chemistry did not match any predicted separation distances. Modeling based upon known QD and DNA structures along with the linkage chemistry and FRET-derived distances was used to simulate each QD-DNA structure and provide insight into the underlying architecture. Although displaying some rotational freedom, the DNA modified with the polyhistidine assembles to the QD with its structure extended out from the QD-PEG surface as predicted. In contrast, the random orientation of streptavidin on the QD surface resulted in DNA with a wide variety of possible orientations relative to the QD which cannot be controlled during assembly. These results suggest that if a particular QD biocomposite structure is desired, for example, random versus oriented, the type of bioconjugation chemistry utilized will be a key influencing factor.


Chemical Reviews | 2017

Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications

Niko Hildebrandt; Christopher M. Spillmann; W. Russ Algar; Thomas Pons; Michael H. Stewart; Eunkeu Oh; Kimihiro Susumu; Sebastián A. Díaz; James B. Delehanty; Igor L. Medintz

Luminescent semiconductor quantum dots (QDs) are one of the more popular nanomaterials currently utilized within biological applications. However, what is not widely appreciated is their growing role as versatile energy transfer (ET) donors and acceptors within a similar biological context. The progress made on integrating QDs and ET in biological configurations and applications is reviewed in detail here. The goal is to provide the reader with (1) an appreciation for what QDs are capable of in this context, (2) how this field has grown over a relatively short time span, and, in particular, (3) how QDs are steadily revolutionizing the development of new biosensors along with a myriad of other photonically active nanomaterial-based bioconjugates. An initial discussion of QD materials along with key concepts surrounding their preparation and bioconjugation is provided given the defining role these aspects play in the QDs ability to succeed in subsequent ET applications. The discussion is then divided around the specific roles that QDs provide as either Förster resonance energy transfer (FRET) or charge/electron transfer donor and/or acceptor. For each QD-ET mechanism, a working explanation of the appropriate background theory and formalism is articulated before examining their biosensing and related ET utility. Other configurations such as incorporation of QDs into multistep ET processes or use of initial chemical and bioluminescent excitation are treated similarly. ET processes that are still not fully understood such as QD interactions with gold and other metal nanoparticles along with carbon allotropes are also covered. Given their maturity, some specific applications ranging from in vitro sensing assays to cellular imaging are separated and discussed in more detail. Finally a perspective on how this field will continue to evolve is provided.


Journal of the American Chemical Society | 2010

Self-Assembled Quantum Dot-Sensitized Multivalent DNA Photonic Wires

Kelly Boeneman; Duane E. Prasuhn; Juan B. Blanco-Canosa; Philip E. Dawson; Joseph S. Melinger; Mario G. Ancona; Michael H. Stewart; Kimihiro Susumu; Alan L. Huston; Igor L. Medintz

Combining the inherent scaffolding provided by DNA structure with spatial control over fluorophore positioning allows the creation of DNA-based photonic wires with the capacity to transfer excitation energy over distances greater than 150 Å. We demonstrate hybrid multifluorophore DNA-photonic wires that both self-assemble around semiconductor quantum dots (QDs) and exploit their unique photophysical properties. In this architecture, the QDs function as both central nanoscaffolds and ultraviolet energy harvesting donors that drive Förster resonance energy transfer (FRET) cascades through the DNA wires with emissions that approach the near-infrared. To assemble the wires, DNA fragments labeled with a series of increasingly red-shifted acceptor-dyes were hybridized in a predetermined linear arrangement to a complementary DNA template that was chemoselectively modified with a hexahistidine-appended peptide. The peptide portion facilitated metal-affinity coordination of multiple hybridized DNA-dye structures to a central QD completing the final nanocrystal-DNA photonic wire structure. We assembled several such hybrid structures where labeled-acceptor dyes were excited by the QDs and arranged to interact with each other via consecutive FRET processes. The inherently facile reconfiguration properties of this design allowed testing of alternate formats including the addition of an intercalating dye located in the template DNA or placement of multiple identical dye acceptors that engaged in homoFRET. Lastly, a photonic structure linking the central QD with multiple copies of DNA hybridized with 4-sequentially arranged acceptor dyes and demonstrating 4-consecutive energy transfer steps was examined. Step-by-step monitoring of energy transfer with both steady-state and time-resolved spectroscopy allowed efficiencies to be tracked through the structures and suggested that acceptor dye quantum yields are the predominant limiting factor. Integrating such DNA-based photonic structures with QDs can help create a new generation of biophotonic wire assemblies with widespread potential in nanotechnology.


ACS Nano | 2011

Monitoring Botulinum Neurotoxin A Activity with Peptide-Functionalized Quantum Dot Resonance Energy Transfer Sensors

Kim E. Sapsford; Jessica Granek; Jeffrey R. Deschamps; Kelly Boeneman; Juan B. Blanco-Canosa; Philip E. Dawson; Kimihiro Susumu; Michael H. Stewart; Igor L. Medintz

Botulinum neurotoxins (BoNTs) are extremely potent bacterial toxins that contaminate food supplies along with having a high potential for exploitation as bioterrorism agents. There is a continuing need to rapidly and sensitively detect exposure to these toxins and to verify their active state, as the latter directly affects diagnosis and helps provide effective treatments. We investigate the use of semiconductor quantum dot (QD)-peptide Förster resonance energy transfer (FRET) assemblies to monitor the activity of the BoNT serotype A light chain protease (LcA). A modular LcA peptide substrate was designed and optimized to contain a central LcA recognition/cleavage region, a unique residue to allow labeling with a Cy3 acceptor dye, an extended linker-spacer sequence, and a terminal oligohistidine that allows for final ratiometric peptide-QD-self-assembly. A number of different QD materials displaying charged or PEGylated surface-coatings were evaluated for their ability to self-assemble dye-labeled LcA peptide substrates by monitoring FRET interactions. Proteolytic assays were performed utilizing either a direct peptide-on-QD format or alternatively an indirect pre-exposure of peptide to LcA prior to QD assembly. Variable activities were obtained depending on QD materials and formats used with the most sensitive pre-exposure assay result demonstrating a 350 pM LcA limit of detection. Modeling the various QD-peptide sensor constructs provided insight into how the resulting assembly architecture influenced LcA recognition interactions and subsequent activity. These results also highlight the unique roles that both peptide design and QD features, especially surface-capping agents, contribute to overall sensor activity.

Collaboration


Dive into the Michael H. Stewart's collaboration.

Top Co-Authors

Avatar

Kimihiro Susumu

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Igor L. Medintz

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Philip E. Dawson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James B. Delehanty

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alan L. Huston

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Eunkeu Oh

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeffrey R. Deschamps

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. Russ Algar

Government of the United States of America

View shared research outputs
Top Co-Authors

Avatar

Kelly Boeneman Gemmill

United States Naval Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge